Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 064204    DOI: 10.1088/1674-1056/23/6/064204

Systematical analysis of mode-locked fiber lasers using single-walled carbon nanotube saturable absorbers

Zhang Xiao (张晓), Song Yan-Rong (宋晏蓉)
Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
Abstract  The output characteristics of the Er-doped mode-locked fiber laser using a single-walled carbon nanotube saturable absorber are investigated theoretically with a nonlinear Schrödinger equation and a saturable absorption equation using realistic parameters. Stable self-starting mode-locking pulses are achieved under net normal, net zero, and net anomalous cavity group velocity dispersion (GVD) respectively. A spectrum with a flat top is obtained from the net normal cavity GVD laser while a spectrum with Kelly side-bands is obtained from the net anomalous cavity GVD laser. The characteristics of the pulse duration changing with cavity GVD and modulation depth of the single-walled carbon nanotubes are discussed. The characteristics of the mode-locking pulses from net normal, net zero, and net anomalous cavity GVD mode-locked fiber lasers are compared. These systematical results are useful for designing mode-locked fiber lasers with saturable absorbers made by different kinds of carbon nano-materials.
Keywords:  mode-locked fiber lasers      carbon nanotubes      theory  
Received:  04 September 2013      Revised:  07 November 2013      Accepted manuscript online: 
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Key Basic Research Progrm of China (Grant No. 2013CB922404), the National Natural Science Foundation of China (Grant No. 61177047), and the Key Project of the National Natural Science Foundation of China (Grant No. 61235010).
Corresponding Authors:  Song Yan-Rong     E-mail:

Cite this article: 

Zhang Xiao (张晓), Song Yan-Rong (宋晏蓉) Systematical analysis of mode-locked fiber lasers using single-walled carbon nanotube saturable absorbers 2014 Chin. Phys. B 23 064204

[1] Hernandez-Romano I, Mandridis D, May-Arrioja D A, Sanchez-Mondragon J J and Delfyett P J 2011 Opt. Lett. 36 2122
[2] Baylam I, Ozharar S, Cankaya H, Choi S Y, Kim K, Rotermund F, Griebner U, Petrov V and Sennaroglu A 2012 Opt. Lett. 37 3555
[3] Schmidt A, Rivier S, Steinmeyer G, Yim J H, Cho W B, Lee S, Rotermund F, Pujol M C, Mateos X, Aguiló M, Díaz F, Petrov V and Griebner U 2008 Opt. Lett. 33 729
[4] Hernandez-Romano I, Davila-Rodriguez J, Mandridis D, Sanchez-Mondragon J J, May-Arrioja D and P Delfyett J 2011 J. Lightwave Technol. 29 3237
[5] Zhao G Z, Xiao X S, Meng F, Mei J W and Yang C X 2013 Chin. Phys. B 22 104205
[6] Qu Z S, Wang Y G, Liu J, Zheng L H, Su L B and Xu J 2012 Chin. Phys. B 21 064211
[7] Chen Y C, Raravikar N R, Schadler L S, Ajayan P M, Zhao Y P, Lu T M, Wang G C and Zhang X C 2002 Appl. Phys. Lett. 81 975
[8] Set S Y, Yaguchi H, Tanaka Y and Jablonski M 2004 J. Lightwave Technol. 22 51
[9] Song Y, Set S Y, Yamashita S, Goh C S and Kotake T 2005 IEEE Photon. Technol. Lett. 17 1623
[10] Li X, Wang Y, Wang Y, Liu X, Zhao W, Hu X, Yang Z, Zhang W, Gao C, Shen D, Li C and Tsang Y H 2013 Opt. Laser Technol. 47 144
[11] Fang Q, Kieu K and Peyghambarian N 2010 IEEE Photon. Technol. Lett. 22 1656
[12] Shohda F, Shirato T, Nakazawa M, Komatsu K and Kaino T 2008 Opt. Express 16 21191
[13] Martinez A and Yamashita S 2011 Opt. Express 19 6155
[14] Nozaki Y, Nishizawa N, Omoda E, Kataura H and Sakakibara Y 2012 Opt. Express 37 5079
[15] Agrawal G 2001 Applications of Nonlinear Fiber Optics (Scan Diego: Academic Press)
[16] Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
[17] Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett. 101 153904
[18] Liu X, Wang L, Li X, Sun H, Lin A, Lu K, Wang Y and Zhao W 2009 Opt. Express 17 8506
[19] Wang R, Dai Y, Yan L, Wu J, Xu K, Li Y and Lin J 2012 Opt. Express 20 6406
[20] Liu X M 2010 Phys. Rev. A 81 023811
[21] Liu X M 2010 Phys. Rev. A 82 063834
[22] Kong L J, Xiao X S and Yang C X 2011 Chin. Phys. B 20 024207
[23] Liu X M 2009 Opt. Express 17 22401
[24] Mao D, Liu X and Lu H 2012 Opt. Lett. 37 2619
[25] Tan S J, Ismail M A, Shahabuddin N S, Ahmad H, Arof H and Harun S W 2012 Laser Phys. 22 1240
[26] Song Y F, Zhang H, Tang D Y and Shen D Y 2012 Opt. Express 20 27283
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[5] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[6] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[11] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[12] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[13] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[14] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[15] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
No Suggested Reading articles found!