Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 124205    DOI: 10.1088/1674-1056/22/12/124205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A sensitive method of determining optic axis azimuth based on laser feedback

Wu Yun (吴云), Zhang Peng (张鹏), Chen Wen-Xue (陈文学), Tan Yi-Dong (谈宜东)
The State Key Lab of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Abstract  A sensitive method to determine the optic axis azimuth of the birefringence element is presented, which is based on laser feedback. The phase difference between the two intensities in birefringence feedback changes with the angle between the optic axis of the birefringence element and laser original polarization. The phase difference is highly sensitive to the relative position of the optic axis and the laser original polarization. This method is used to highly precisely determine the optic axis azimuth, and is able to distinguish between the fast axis and the slow axis of the birefringence element. Theoretical analysis and experimental results are both demonstrated.
Keywords:  laser feedback      optic axis      differential method      phase difference  
Received:  22 February 2013      Revised:  04 July 2013      Accepted manuscript online: 
PACS:  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.62.-b (Laser applications)  
  78.20.Fm (Birefringence)  
Fund: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 3091002).
Corresponding Authors:  Tan Yi-Dong     E-mail:  Tanyd@tsinghua.edu.cn

Cite this article: 

Wu Yun (吴云), Zhang Peng (张鹏), Chen Wen-Xue (陈文学), Tan Yi-Dong (谈宜东) A sensitive method of determining optic axis azimuth based on laser feedback 2013 Chin. Phys. B 22 124205

[1] O’Flaherty N, Kiyomoto N, Shirahama I and Mochida Y 1990 Proc. SPIE 1274 Electro–Optic and Magneto–Optic Materials Ⅱ, August 1, 1990, Hague, Netherlands, p. 122
[2] Li G, Li J Z and Li Y 1990 Appl. Opt. 29 1870
[3] Azzam R M A 1980 Appl. Opt. 19 3902
[4] Chiu M, Chen C and Su D 1996 J. Opt. Soc. Am. A 13 1924
[5] King P G R and Steward G J 1963 New Sci. 17 180
[6] Donati S and Giuliani G 1995 IEEE J. Quantum Electron. 31 113
[7] Ren Z, Tan Y D, Wan X J, Li D and Zhang S L 2008 Chin. Phys. Lett. 25 3995
[8] Brannon J 1976 Appl. Opt. 15 1119
[9] Shimizu E T 1987 Appl. Opt. 26 4541
[10] Shinohara S 1989 IEEE Trans. Instrum. Meas. 38 574
[11] Koboyashi S, Yamamoto Y, Ito M and Kimura T 1982 IEEE J. Quantum Electron. 18 582
[12] Gouaux F, Servagent N and Bosch T 1998 Appl. Opt. 37 6684
[13] Beheim G and Firtsch K 1986 Appl. Opt. 25 1439
[14] Fei L G and Zhang S L 2006 Chin. Phys. Lett. 23 2974
[15] Wang W M, Grattan K T V, Palmer A W and Boyle W J O 1994 J. Lightwave Technol. 12 1577
[1] Recast combination functions of coordinate and momentum operators into their ordered product forms
Lei Wang(王磊), Xiang-Guo Meng(孟祥国), Ji-Suo Wang(王继锁). Chin. Phys. B, 2020, 29(5): 050303.
[2] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[3] Bubble translation driven by pulsation in a double-bubble system
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yuan-Yuan Zhang(张圆媛), Yao-Rong Wu(武耀蓉), Xun Wang(王寻), Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2020, 29(3): 034303.
[4] Effect of the fluctuant acoustic channel on the gain of a linear array in the ocean waveguide
Lei Xie(谢磊), Chao Sun(孙超), Guang-Yu Jiang(蒋光禹), Xiong-Hou Liu(刘雄厚), De-Zhi Kong(孔德智). Chin. Phys. B, 2018, 27(11): 114301.
[5] Analysis of the injection-locked magnetron with a mismatched circulator
Yue Song (岳松), Zhang Zhao-Chuan (张兆传), Gao Dong-Ping (高冬平). Chin. Phys. B, 2014, 23(8): 088402.
[6] Equivalent comparison and analysis between different nominal frequencies
Li Zhi-Qi (李智奇), Wei Zhong (韦中), Zhou Wei (周渭), Song Hui-Min (宋慧敏), Lu Wei-Hao (鲁伟昊). Chin. Phys. B, 2014, 23(11): 110602.
[7] Non-contact angle measurement based on parallel multiplex laser feedback interferometry
Zhang Song (张松), Tan Yi-Dong (谈宜东), Zhang Shu-Lian (张书练). Chin. Phys. B, 2014, 23(11): 114202.
[8] Laser feedback interferometer with oscillating feedback mirror
Wang Zhi-Guo (汪之国), Wang Fei (王飞), Xiao Guang-Zong (肖光宗 ). Chin. Phys. B, 2012, 21(11): 114201.
[9] Effect of atomic initial phase difference on spontaneous emission of an atom embedded in photonic crystal
Zhang Bing(张冰), Sun Xiu-Dong(孙秀冬), and Jiang Xiang-Qian(姜向前). Chin. Phys. B, 2010, 19(8): 083201.
[10] Polarization switching in a quasi-isotropic microchip Nd:YAG laser induced by optical feedback
Ren Cheng(任成), Tan Yi-Dong(谈宜东), and Zhang Shu-Lian(张书练). Chin. Phys. B, 2010, 19(2): 024206.
[11] The spatial properties of atomic Raman--Nath diffraction
Li Li-Ping(李利平), Zhang Li-Yan (张利彦), Song Pei-Jun(宋佩君), Xie Xiao-Tao(谢小涛), and Li Wei-Bin(李伟斌) . Chin. Phys. B, 2007, 16(8): 2428-2432.
[12] Electron acceleration by two crossed Bessel--Gaussian beams in vacuum
Zhao Zhi-Guo(赵志国) and Lü Bai-Da(吕百达). Chin. Phys. B, 2006, 15(10): 2332-2337.
No Suggested Reading articles found!