Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 114211    DOI: 10.1088/1674-1056/22/11/114211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques

Kang Zhe (康哲), Yuan Jin-Hui (苑金辉), Li Sha (李莎), Xie Song-Lin (解松霖), Yan Bin-Bin (颜玢玢), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀)
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/km is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.
Keywords:  all-optical analog-to-digital conversion      photonic crystal fiber      soliton self-frequency shift      spectral compression  
Received:  28 January 2013      Revised:  26 April 2013      Accepted manuscript online: 
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.70.Mp (Nonlinear optical crystals)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327605 and 2010CB328304), the National High-Technology Research and Development Program of China (Grant No. 2013AA031501), the National Natural Science Foundation of China (Grant No. 61307109), the Research Foundation from Ministry of Education of China (Grant No. 109015), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NECT-11-0596), the Beijing Nova Program, China (Grant No. 2011066), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120005120021), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2013RC1202), the China Postdoctoral Science Foundation (Grant No. 2012M511826), and the Postdoctoral Science Foundation of Guangdong Province, China (Grant No. 244331).
Corresponding Authors:  Yuan Jin-Hui     E-mail:  yuanjinhui81@163.com

Cite this article: 

Kang Zhe (康哲), Yuan Jin-Hui (苑金辉), Li Sha (李莎), Xie Song-Lin (解松霖), Yan Bin-Bin (颜玢玢), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀) Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques 2013 Chin. Phys. B 22 114211

[1] Khilo A, Spector S J and Grein M E 2012 Opt. Express 20 4454
[2] Xu K, Niu J, Dai Y T, Sun X Q, Dai J, Wu J and Lin J T 2011 Appl. Opt. 50 1995
[3] Valley G C 2007 Opt. Express 15 1955
[4] Miao B L, Chen C H, Sharkway A, Shi S Y and Prather DW2006 Opt. Express 14 7966
[5] Oda S I and Maruta A 2005 Photon. Technol. Lett. 17 465
[6] Ikeda K, Mohammad J, Namiki S and Kitayama K I 2005 Opt. Express 13 4296
[7] Satoh T, Takahashi K, Matsui H, Itoh K and Konishi T 2012 Photon. Technol. Lett. 24 830
[8] Konishi T, Takahashi K, Matsui H and Satoh T 2012 International Conference on Transparent Optical Networks, July 02, Coventry, UK, p. 1
[9] Shen X W, Yuan J H, Sang X Z, Yu C X, Rao L, Xia M, Han Y, Xia C M, Hou L T, Wu Z C and He X L 2013 Chin. Phys. B 22 014102
[10] Yuan J H, Sang X Z, Yu C X, Xin X J, Li S G, Zhou G Y and Hou L T 2010 Chin. Phys. B 19 074218
[11] Shen X W, Yuan J H, Sang X Z, Yu C X, Rao L, Xia M, Han Y, Xia C M and Hou L T 2012 Chin. Phys. B 21 114102
[12] Fedotov A B, Voronin A A, Fedotov I V, Ivanov A A and Zheltikov A M 2009 Opt. Lett. 34 662
[13] Liang R, Zhou X J, Zhang Z Y, Qin Z J, Li H P and Liu Y 2009 Opt. Fiber Technol. 15 438
[14] Chuang H P and Huang C B 2011 Opt. Lett. 36 2848
[15] Chuang H P and Huang C B 2011 Photonics Conference, October 9, Arlington, USA, pp. 569
[16] Nishizawa N, Takahashi K, Ozeki Y and Itoh K 2010 Opt. Express 18 11700
[17] Agrawal G P 2007 Nonlinear Fiber Optics 4nd edn. (Salt Lake City: Academic Press) pp. 40
[18] Tamura K R and Nagazawa M 2001 Opt. Lett. 26 762
[1] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[2] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[3] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[4] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[5] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[6] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[7] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[8] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[9] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[10] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[11] Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云). Chin. Phys. B, 2019, 28(12): 124202.
[12] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[13] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[14] Study on polarization properties of graphene coated D-shaped fiber
Xuejing Liu(刘学静), Luwen Yang(杨禄文), Jingyun Ma(马敬云), Caili Li(李彩丽), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2018, 27(10): 104206.
[15] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
No Suggested Reading articles found!