Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 096101    DOI: 10.1088/1674-1056/22/9/096101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs):A molecular dynamics approach

Muhammad Imrana, Fayyaz Hussaina b, Muhammad Rashida, Yongqing Caib, S. A. Ahmada
a Department of Physics Simulation Lab, The Islamia University of Bahawalpur 63100, Pakistan;
b Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore
Abstract  In the present work, three-dimensional molecular dynamics simulation is carried out to elucidate the nanoindentation behaviors of CuZr Bulk metallic glasses (BMGs). The substrate indenter system is modeled using hybrid interatomic potentials including both many-body Finnis Sinclair (FS) and two-body Morse potentials. A spherical rigid indenter (diameter=60 Å(1 Å=1010 m)) is employed to simulate the indentation process. Three samples of BMGs including Cu25Zr75, Cu50Zr50, and Cu75Zr25 are designed and the metallic glasses are formed by rapid cooling from the melt state at about 2000 K. The radial distribution functions are analyzed to reveal the dynamical evolution of the structure of the atoms with different compositions and different cooling rates. The mechanical behavior can be well understood in terms of load-depth curves and Hardness-depth curves during the nanoindentation process. Our results indicate a positive linear relationship between the hardness and the Cu concentration of the BMG sample. To reveal the importance of cooling rate provided during the processing of BMGs, we investigate the indentation behaviors of Cu50Zr50 at three different quenching rates. Nanoindentation results and radial distribution function (RDF) curves at room temperature indicate that a sample can be made harder and more stable by slowing down the quenching rate.
Keywords:  Bulk metallic glasses (BMGs)      nanoindentation      deformation      quenching rate  
Received:  26 December 2012      Revised:  27 March 2013      Accepted manuscript online: 
PACS:  62.20.F- (Deformation and plasticity)  
  62.20.mm (Fracture)  
  62.20.mt (Cracks)  
Fund: Project supported by the Higher Education Commission (HEC) of Pakistan (Grant No.+923445490402).
Corresponding Authors:  Muhammad Imran     E-mail:  anam_iub@yahoo.com

Cite this article: 

Muhammad Imran, Fayyaz Hussain, Muhammad Rashid, Yongqing Cai, S. A. Ahmad Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs):A molecular dynamics approach 2013 Chin. Phys. B 22 096101

[1] Johnson W L 2002 J. Miner. Met. Mater. Soc. 54 40
[2] Jeong H W, Hata S and Shimokohbe A 2003 J. Microelectromech. S. 12 42
[3] Sambandam S N, Bhansali S and Bhethanabotla V R 2004 Mater. Res. Soc. Symp. Proc. 806
[4] Saotome Y, Noguchi Y, Zhang T and Inoue A 2004 Mater. Sci. Eng. A 389 375
[5] Schuh C A, Hufnagel T C and Ramamurty U 2007 Acta Mater. 55 4067
[6] Chen M 2008 Rev. Mater. Res. 38 445
[7] Trexler M M and Thadhani N N 2010 Prog. Mater. Sci. 55 759
[8] Dreham A L, Greer A L and Turnbull D 1982 Appl. Phys. Lett. 41 716
[9] Inoue A, Zhang T and Masumoto T 1990 Mater. Trans. JIM 31 425
[10] Zhang T, Inoue A and Masumoto T 1991 Mater. Trans. JIM 32 1005
[11] Inoue A and Takeuchi A 2002 Mater. Trans. JIM 43 1892
[12] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R 44 45
[13] Li Y, Guo Q, Kalb J A and Thompson C V 2008 Science 322 1816
[14] Mattern N, Schops A, Kuhn U, Acker J, Khvostikova O and Eckert J 2008 J. Non-Cryst. Solids 354 1054
[15] Mattern N, Jovari P, Kaban I, Gruner S, Elsner A, Kokotin V, Franz H, Beuneu B and Eckert J 2009 J. Alloy. Compd. 485 163
[16] Mattern N, Bednarcik J, Pauly S, Wang G, Das J and Eckert 2009 Acta Mater. 57 4133
[17] Antonowicz J, Pietnoczka A, Zalewski W, Bacewicz R, Stoica M, Georgarakis K and Yavari A R 2011 J. Alloy. Compd. 509S S34
[18] Inoue A 2000 Acta Mater. 48 279
[19] Wright A J, Saha R and Nix W D 2011 Mater. Trans. JIM 42 642
[20] Kang B C, Kim H Y, Kwon O Y and Hong S H 2007 Scr. Mater. 57 703
[21] Barshilia H C and Rajam K S 2002 Surf. Coat. Technol. 195 155
[22] Chudoba T, Schwarzer N, Richter F and Beck U 2000 Thin Solid Films 377 366
[23] Oliver W C and Pharr G M 1992 J. Mater. Res. 7 1564
[24] Hay J L and Pharr G M 2000 ASM Handbook (ASM International)
[25] Vaidyanathan R, Dao M, Ravichandran G and Suresh S 2001 Acta Mater. 49 3781
[26] Schuh C A and Nieh T G 2004 J. Mater. Res. 19 46
[27] Puthucode A, Banerrjee R, Vadlakonda S, Mirshams R and Kaufman M J 2008 Metall. Mater. Trans. A 39 1552
[28] Bei H, Lu Z P and George E 2004 Phys. Rev. Lett. 93 125504
[29] Liu L and Chan K C 2005 Mater. Lett. 59 3090
[30] Lagogianni A E, Almyras G, Lekka C E, Papageorgiou D G and Evangelakis G A 2009 J. Alloy. Compd. 483 658
[31] Pang J J, Tan M J, Liew K M and Shear W C 2012 Physica B 40 7 340
[32] Raghavan R, Kombaiah B, Dobeli M, Erni R, Ramamurty U and Michler J 2012 Mate. Sci. Eng. A 532 407
[33] Yoo B G, Oh J H, Kim Y J, Park K W, Lee J C and Jang J I 2010 Intermetallics 18 1898
[34] Zhao L, Ma C L, Fu M W and Zeng X R 2012 Intermetallics 30 65
[35] Wang J, Hodgson P D, Zhang J, Yan W and Yang C 2010 Comp. Mater. Sci. 50 211
[36] Shi Y and Falk M L 2007 Thin Solid Films 515 3179
[37] Deng S C and Christopher A 2012 Appl. Phys. Lett. 100 251909
[38] Duraru A P, Andersen U G, Thyssen A, Bailey N P, Jacobsen K W and Schiotz J 2010 Modelling Simul. Mater. Sci. Eng. 18 055006
[39] Shi Y and Falk M L 2007 Acta Mater. 55 4317
[40] Shi Y and Falk M L 2006 Scripta Mater. 54 381
[41] Finnis M W and Sinclair I E 2007 Phil. Mag. A 50 45
[42] Plimpton S J 1995 J. Comput. Phys. 117 1
[43] Imran M, Hussain F, Rashid M and Ahmad S A 2012 Chin. Phys. B 21 126802
[44] Imran M, Hussain F, Rashid M and Ahmad S A 2012 Chin. Phys. B 21 116201
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[3] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[6] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[7] Weakening effect of plastic yielding inception in thin hard coating systems
Xiao Huang(黄啸), Shujun Zhou(周述军), and Tianmin Shao(邵天敏). Chin. Phys. B, 2021, 30(3): 038104.
[8] Estimation of biophysical properties of cell exposed to electric field
Hui Zhang(张辉), Liyang Wang(王李阳), Peijie Zhang(张培杰), Xiaodi Zhang(张小娣), and Jun Ma(马军). Chin. Phys. B, 2021, 30(3): 038702.
[9] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[10] Dislocation slip behaviors in high-quality bulk GaN investigated by nanoindentation
Kai-Heng Shao(邵凯恒), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(11): 116104.
[11] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[12] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[13] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[14] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[15] Irradiation hardening behaviors of tungsten-potassium alloy studied by accelerated 3-MeV W2+ ions
Xiao-Liang Yang(杨晓亮), Long-Qing Chen(陈龙庆), Wen-Bin Qiu(邱文彬), Yang-Yi-Peng Song(宋阳一鹏), Yi Tang(唐毅), Xu-Dong Cui(崔旭东), Chang-Song Liu(刘长松), Yan Jiang(蒋燕), Tao Zhang(张涛), Jun Tang(唐军). Chin. Phys. B, 2020, 29(4): 046102.
No Suggested Reading articles found!