Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090306    DOI: 10.1088/1674-1056/22/9/090306
GENERAL Prev   Next  

Generalized quantum mechanical two-Coulomb-center problem (Demkov problem)

A. M. Puchkova, A. V. Kozedubb, E. O. Bodniaa
a Theoretical Department, Institute of Physics, St. Petersburg State University, Petergof, St.Petersburg 198904, Russia;
b Department of Computational Physics, Faculty of Physics, St. Petersburg State University, Petergof, St.Petersburg 198904, Russia
Abstract  We present a new exactly solvable quantum problem for which the Schrödinger equation allows for separation of variables in oblate spheroidal coordinates. Namely, this is the quantum mechanical two-Coulomb-center problem for the case of an imaginary intercenter parameter and complex conjugate charges are considered. Since the potential is defined by the two-sheeted mapping whose singularities are concentrated on a circle rather than at separate points, there arise additional possibilities in the choice of boundary conditions. A detailed classification of the various types of boundary-value problems is given. The quasi-radial equation leads to a new type of boundary value problem which has never been considered before. Results of the numerical calculations, which allow conclusions to be drawn about the structure of the energy spectrum, are shown. Possible physical applications are discussed.
Keywords:  two-Coulomb-center problem      potential models  
Received:  11 December 2012      Revised:  14 March 2013      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  12.39.Pn (Potential models)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  31.90.+s (Other topics in the theory of the electronic structure of atoms and molecules)  
Fund: Dedicated to the memory of Professor Dr. Yu. N. Demkov (12.04.1926-15.11.2010).
Corresponding Authors:  A. M. Puchkov, A. V. Kozedub, E. O. Bodni     E-mail:  putchkov@yahoo.com; alexey.kozhedub@mail.ru; evgeniya.bodnya@cern.ch

Cite this article: 

A. M. Puchkov, A. V. Kozedub, E. O. Bodnia Generalized quantum mechanical two-Coulomb-center problem (Demkov problem) 2013 Chin. Phys. B 22 090306

[1] Jaffe G 1934 Z. Phys. 87 535
[2] Baber W G and Hasse H R 1935 Proc. Cambr. Phil. Soc. 31 564
[3] Komarov I V, Ponomarev L I and Slavyanov S Yu 1976 Spheroidal and Coulomb Spheroidal Functions (Moscow: Nauka) (in Russian)
[4] Truskova N F 1976 Preprint JINR P11-10207 Dubna
[5] Helfrich K and Hartmann H 1970 Theor. Chim. Acta 16 263
[6] Demkov Yu N and Komarov I V 1966 J. Exp. Theor. Phys. 50 286
[7] Solov’ev E A 1981 J. Exp. Theor. Phys. 54 893
[8] Ovchinnikov S Yu and Solov’ev E A 1986 J. Exp. Theor. Phys. 90 921
[9] Grozdanov T P and Solov’ev E A 1990 Phys. Rev. A 42 2703
[10] Demin V G 1968 Motion of an Artificial Satellite in the Noncentral Gravitational Field (Moscow: Nauka) (in Russian)
[11] Landau L D and Lifshitz E M 1977 Quantum Mechanics: Non-Relativistic Theory 3rd edn. (Pergamon: Oxford University Press)
[12] Slavyanov S Yu and Lay W 2000 Special Functions: A Unified Theory Based on Singularities (New York: Oxford University Press)
[13] Gradshteyn I S and Ryzhik I M 1966 Tables of Integrals, Series and Products (New York: Academic)
[14] Levine I N 1964 J. Chem. Phys. 41 2044
[15] Baz’A I, Zel’dovich Ya B and Perelomov A M 1969 Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics (Jerusalem: Israel Program for Scientific Translation)
[16] Rainwater J 1950 Phys. Rev. 79 432
[17] Nikiforov A F and Uvarov V B 1998 Special Functions of Mathematical Physics (Basel: Birkhäuser)
[18] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math. Gen. 36 11807
[19] Ciftci H, Hall R L and Saad N 2005 J. Phys. A: Math. Gen. 38 1147
[20] Boztosun I and Karakoc M 2007 Chin. Phys. Lett. 24 3028
[21] Zhang M C and Huangfu G Q 2010 Acta Phys. Sin. 59 6819 (in Chinese)
[22] Matrasulov D U, Musakhanov M M and Morii T 2000 Phys. Rev. C 61 045204
[23] Matrasulov D U, Khanna F C, Rakhimov K Y and Butanov K T 2002 Eur. Phys. J. A 14 81
[24] Majethiya A, Patel B and Vinodkumar P C 2010 Chin. Phys. C 34 1399
[25] Grubb S V, Otis C E, Whetten R L, Grant E R and Albrecht A C 1985 J. Chem. Phys. 82 1135
[1] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[2] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[3] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[4] Geometric quantities of lower doubly excited bound states of helium
Chengdong Zhou(周成栋), Yuewu Yu(余岳武), Sanjiang Yang(杨三江), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2022, 31(3): 030301.
[5] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[6] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[7] Thermodynamic properties of massless Dirac-Weyl fermions under the generalized uncertainty principle
Guang-Hua Xiong(熊光华), Chao-Yun Long(龙超云), and He Su(苏贺). Chin. Phys. B, 2021, 30(7): 070302.
[8] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[9] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[10] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[11] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[12] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[13] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[14] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[15] Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
Runzu Zhang(张润祖), Weihua Zhang(张为华), Barbara Dietz, Guozhi Chai(柴国志), Liang Huang(黄亮). Chin. Phys. B, 2019, 28(10): 100502.
No Suggested Reading articles found!