Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090307    DOI: 10.1088/1674-1056/22/9/090307
GENERAL Prev   Next  

Comparison of entanglement trapping among different photonic band gap models

Zhang Ying-Jie (张英杰)a, Yang Xiu-Qin (杨秀芹)a b, Han Wei (韩伟)a, Xia Yun-Jie (夏云杰)a
a Key Laboratory of Laser Polarization and Information Technology of Shandong Province, Department of Physics, Qufu Normal University, Qufu 273165, China;
b State Key laboratory of Crystal Material, Shandong University, Jinan 250100, China
Abstract  We investigate the roles of different qubit-environment decoherence models on the entanglement trapping of two qubits. By considering three environmental models (the single photonic band gap model, the common photonic band gap model, and the two independent photonic band gaps model), we note that the final values of entanglement trapping are determined by these different models. We also give the conditions of obtaining the larger entanglement trapping by comparing two-qubit entanglement dynamics in different decoherence models. Moreover, the comparison of entanglement trapping between two Bell-like states in the same decoherence model are also carried out.
Keywords:  entanglement trapping      quantum decoherence      photonic band gap      pseudomode method  
Received:  06 December 2012      Revised:  19 March 2013      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and 11247240), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123705120002), the Open Project of State Key Laboratory of Crystal Material in Shandong University, China (Grant No. KF1103), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ024), the Youth Funds from Qufu Normal University, China (Grant No. XJ201219), and the Scientific Research Foundation for Doctors of Qufu Normal University, China (Grant No. BSQD20110132).
Corresponding Authors:  Zhang Ying-Jie     E-mail:  yingjiezhang2007@163.com

Cite this article: 

Zhang Ying-Jie (张英杰), Yang Xiu-Qin (杨秀芹), Han Wei (韩伟), Xia Yun-Jie (夏云杰) Comparison of entanglement trapping among different photonic band gap models 2013 Chin. Phys. B 22 090307

[1] Breuer H P and Petruccione F 2002 (Oxford: Oxford University Press)
[2] Diósi L 2003 (Berlin: Springer) p. 157
[3] Huang J, Fang M F, Yang B Y and Liu X 2012 Chin. Phys. B 21 084205
[4] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[5] Yu T and Eberly J H 2009 Science 323 598
[6] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Wallborn S P, Souto Ribeiro P H and Davidovich L 2007 Science 316 579
[7] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504
[8] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[9] Hagley E, Maitre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 1
[10] Gordon G and Kurizki G 2006 Phys. Rev. Lett. 97 110503
[11] Maniscalco S, Francia F, Zaffino R L, LoGullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503
[12] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
[13] Konópka M and Bužek V 2000 Eur. Phys. J. D 10 285
[14] Bellomo B, Franco R L, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302
[15] Zhang Y J, Man Z X, Xia Y J and Guo G C 2010 Eur. Phys. J. D 58 397
[16] Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D and Vos W L 2004 Nature 430 654
[17] Garraway B M 1997 Phys. Rev. A 55 4636
[18] Garraway B M 1997 Phys. Rev. A 55 2290
[19] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 79 042302
[20] Zhang Y J, Zou X B, Xia Y J and Guo G C 2010 Phys. Rev. A 82 022108
[21] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[22] Yu T and Eberly J H 2007 Quantum Inf. Comput. 7 459
[23] Lopez C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[1] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[2] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[3] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[4] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[5] Dynamically controlled optical nonreciprocity of a double-ladder system with spontaneously generated coherence in moving atomic optical lattice
Nuo Ba(巴诺), Xiang-Yao Wu(吴向尧), Dong-Fei Li(李东飞), Dan Wang(王丹), Jin-You Fei(费金有), Lei Wang(王磊). Chin. Phys. B, 2017, 26(5): 054207.
[6] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[7] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[8] Observation of trapped light induced by Dwarf Dirac-cone in out-of-plane condition for photonic crystals
Subir Majumder, Tushar Biswas, Shaymal K Bhadra. Chin. Phys. B, 2016, 25(10): 107102.
[9] Quantum speed limits for Bell-diagonal states
Han Wei (韩伟), Jiang Ke-Xia (江克侠), Zhang Ying-Jie (张英杰), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(12): 120304.
[10] Extreme narrow photonic passbands generated from defective two-segment-connected triangular waveguide networks
Tang Zhen-Xing (汤振兴), Yang Xiang-Bo (杨湘波), Lu Jian (卢剑), Liu Timon Cheng-Yi (刘承宜). Chin. Phys. B, 2014, 23(4): 044207.
[11] Promote entanglement trapping in photonic band gaps
Han Wei (韩伟), Zhang Ying-Jie (张英杰), Yan Wei-Bin (闫伟斌), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2014, 23(11): 110304.
[12] Characteristics of photonic bands generated by quadrangular multiconnected networks
Luo Rui-Fang (罗瑞芳), Yang Xiang-Bo (杨湘波), Lu Jian (卢剑), Liu Timon Cheng-Yi (刘承宜). Chin. Phys. B, 2013, 22(10): 104211.
[13] Creation of quantum correlations via the initial classical-mixed states
Han Wei (韩伟), Zhang Ying-Jie (张英杰), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2013, 22(1): 010306.
[14] A compact in-plane photonic crystal channel drop filter
Zhao Yi-Nan(赵铱楠), Li Ke-Zheng(李科铮), Wang Xue-Hua(王雪华), and Jin Chong-Jun (金崇君). Chin. Phys. B, 2011, 20(7): 074210.
[15] Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures
Gao Xi(高喜), Yang Zi-Qiang(杨梓强), Qi Li-Mei(亓丽梅), Lan Feng(兰峰), Shi Zong-Jun(史宗君), Li Da-Zhi(李大治), and Liang Zheng(梁正). Chin. Phys. B, 2009, 18(6): 2452-2458.
No Suggested Reading articles found!