INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Enhanced performance of InGaN/GaN multiple quantum well solar cells with double indium content |
Zhao Bi-Jun (赵璧君), Chen Xin (陈鑫), Ren Zhi-Wei (任志伟), Tong Jin-Hui (童金辉), Wang Xing-Fu (王幸福), Li Dan-Wei (李丹伟), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体) |
Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-Electronic Materials and Technology, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The performance of a multiple quantum well (MQW) InGaN solar cell with double indium content is investigated. It is found that the adoption of a double indium structure can effectively broaden the spectral response of the external quantum efficiencies and optimize the overall performance of the solar cell. Under AM1.5G illumination, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 65% and 13% compared with those of a normal single-indium-content MQW solar cell. These improvements are mainly attributed to the expansion of the absorption spectrum and better extraction efficiency of the photon-generated carriers induced by higher polarization.
|
Received: 18 December 2012
Revised: 18 January 2013
Accepted manuscript online:
|
PACS:
|
84.60.Jt
|
(Photoelectric conversion)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172079), the Science and Technology Program of Guangdong Province, China (Grant Nos. 2010B090400456 and 2010A081002002), and the Science and Technology Program of Guangzhou City, China (Grant No. 2011J4300018). |
Corresponding Authors:
Li Shu-Ti
E-mail: lishuti@scnu.edu.cn
|
Cite this article:
Zhao Bi-Jun (赵璧君), Chen Xin (陈鑫), Ren Zhi-Wei (任志伟), Tong Jin-Hui (童金辉), Wang Xing-Fu (王幸福), Li Dan-Wei (李丹伟), Zhuo Xiang-Jing (卓祥景), Zhang Jun (章俊), Yi Han-Xiang (易翰翔), Li Shu-Ti (李述体) Enhanced performance of InGaN/GaN multiple quantum well solar cells with double indium content 2013 Chin. Phys. B 22 088401
|
[1] |
Muth J, Lee J, Shmagin I, Kolbas R, Casey J H, Keller B, Mishra U and DenBaars S 1997 Appl. Phys. Lett. 71 2572
|
[2] |
Singh R, Doppalapudi D, Moustakas T and Romano L 1997 Appl. Phys. Lett. 70 1089
|
[3] |
David A and Grundmann M 2010 Appl. Phys. Lett. 97 033501
|
[4] |
Tong J T, Li S T, Liu T P, Liu C, Wang H L, Wu L J, Zhao B J, Wang X F and Chen X 2012 Chin. Phys. B 21 118502
|
[5] |
Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
|
[6] |
Wu L J, Li S T, Liu C, Wang H L, Lu T P, Zhang K, Xiao G W, Zhou Y G, Zheng S W, Yin Y A and Yang X D 2012 Chin. Phys. B 21 068506
|
[7] |
Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev V V, Ivanov S V, Bechstedt F, Furthmuller J, Harima H, Mudryi V, Aderhold J, Semchinova O and Graul J 2002 Phys. Status Solidi B 229 R1
|
[8] |
Wu J, Walukiewicz W, Yu K M, Shan W, Ager J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477
|
[9] |
Xiao H L, Wang X L, Wang J X, Zhang N H, Liu H X, Zeng Y P, Li J M and Wang Z G 2005 J. Crystals Growth 276 401
|
[10] |
Wu J, Walukiewicz W, Yu K M, Ager III J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
|
[11] |
Nanishi Y, Saito Y and Yamaguchi T 2003 Jpn. J. Appl. Phys. 42 2549
|
[12] |
Wu J Q 2009 Appl. Phys. 106 011101
|
[13] |
De Vos A 1992 Endoreversible Thermodynamics of Solar Energy Conversion (Oxford: Oxford University Press) p. 90
|
[14] |
Friedman D J 2010 Curr. Solid State Mater. Sci. 14 131
|
[15] |
Holec D, Costa P M F J, Kappers M J and Humphreys C J 2007 J. Crystals Growth 303 314
|
[16] |
Zhang X B, Wang X L, Xiao H L, Yang C B, Hou Q F, Yin H B, Chen H and Wang Z G 2011 Chin. Phys. B 20 028402
|
[17] |
Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505
|
[18] |
Deng Q W, Wang X L, Xiao H L, Wang C M, Yin H B, Hong C, Hou Q F, Lin D F, Li J M, Wang Z G and Hou X 2011 J. Phys. D: Appl. Phys. 44 265103
|
[19] |
Dahal R, Li J, Aryal K, Lin J Y and Jiang H X 2010 Appl. Phys. Lett. 97 073115
|
[20] |
Sheu J K, Yang C C, Tu S T, Chang K H, Ming Lee L, Lai W C and Peng L C 2009 IEEE Electron. Dev. Lett. 30 225
|
[21] |
Brown G F, Ager III J W, Walukiewicz W and Wu J 2010 Sol. Energy Mater. Sol. Cells 94 478
|
[22] |
Chang J Y, Liou B T, Lin H W, Shih Y H, Chang S H and Kuo Y K 2011 Opt. Lett. 36 3500
|
[23] |
Rimada J C, Hernandez L, Connolly J P and Barnham K W J 2007 Microelectron. J. 38 513
|
[24] |
Yang C C, Sheu J K, Liang X W, Huang M S, Lee M L, Chang K H, Tu S J, Huang F W and Lai W C 2010 Appl. Phys. Lett. 97 021113
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|