Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074706    DOI: 10.1088/1674-1056/22/7/074706
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Diffusion dynamics in external noise-activated non-equilibrium open system reservoir coupling environment

Wang Chun-Yang (王春阳)
College of Physics and Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
Abstract  The diffusion process in an external noise-activated non-equilibrium open system-reservoir coupling environment is studied by analytically solving the generalized Langevin equation. The dynamical property of the system near the barrier top is investigated in detail by numerically calculating the quantities such as mean diffusion path, invariance, barrier passing probability, and so on. It is found that, comparing with the unfavorable effect of internal fluctuations, the external noise activation is sometimes beneficial to the diffusion process. An optimal strength of external activation or correlation time of the internal fluctuation is expected for the diffusing particle to have a maximal probability to escape from the potential well.
Keywords:  external noise      diffusion      non-equilibrium open environment  
Received:  22 September 2012      Revised:  22 January 2013      Accepted manuscript online: 
PACS:  47.70.-n (Reactive and radiative flows)  
  82.20.Db (Transition state theory and statistical theories of rate constants)  
  82.60.-s (Chemical thermodynamics)  
  05.60.Cd (Classical transport)  
Fund: Project supported by the Natural Science Foundation for Youths of Shandong Province, China (Grant No. ZR2011AQ016) and the Postdoctoral Innovation Program Foundation of Shandong Province, China (Grant No. 201002015).
Corresponding Authors:  Wang Chun-Yang     E-mail:  wchy@mail.bnu.edu.cn

Cite this article: 

Wang Chun-Yang (王春阳) Diffusion dynamics in external noise-activated non-equilibrium open system reservoir coupling environment 2013 Chin. Phys. B 22 074706

[1] Hänggi P, Talkner P and Borkovec M 1990 Rev. Mod. Phys. 62 251
[2] Pollak E 1986 J. Chem. Phys. 85 865
[3] Talker P, Pollak E and Berhkovskii A M 1998 Chem. Phys. 235 231
[4] Kramers H A 1940 Physica (Utrecht) 7 284
[5] Grote R F and Hynes J T 1980 J. Chem. Phys. 73 2715
[6] Tannor D J and Kohen D 1994 J. Chem. Phys. 100 4932
[7] Kohen D and Tannor D J 1995 J. Chem. Phys. 103 6013
[8] Bao J D 2006 J. Chem. Phys. 124 114103
[9] Wang C Y 2009 J. Chem. Phys. 131 054504
[10] Banik S K, Chaudhuri J R and Ray D S 2000 J. Chem. Phys. 112 8330
[11] Chaudhuri J R, Banik S K, Chandra B C and Ray D S 2001 Phys. Rev. E 63 061111
[12] Kubo R 1966 Rep. Prog. Phys. 29 255
[13] Kubo R, Toda M and Hashitsume N 1985 Statistical Physics II: Nonequilibrium Statistical Mechanics (New York: Springer-Verlag)
[14] Hänggi P, Marchesoni F and Grigolini P 1984 Z. Phys. B: Condens. Matter 56 333
[15] Rattray K M and McKane A J 1991 J. Phys. A: Math. Gen 24 4375
[16] Moss F and McClintock P V E 1989 Noise in Nonlinear Dynamical Systems (Cambridge: Cambridge University Press)
[17] Masoliver J and Porrà J M 1993 Phys. Rev. E 48 4309
[18] Einchcomb S J B and McKane A J 1994 Phys. Rev. E 49 259
[19] Horsthemke W, Doering C R, Ray T S and Burschka M A 1992 Phys. Rev. A 45 5492
[20] HorsthemkeWand Lefever R 1984 Noise-Induced Transitions (Berlin: Springer-Verlag)
[21] Zwanzig R 1973 J. Stat. Phys. 9 215
[22] Bai Z W and Bao J D 2005 Phys. Rev. E 72 061105
[23] Wang C Y and Bao J D 2008 Chin. Phys. Lett. 25 429
[24] Ford G W, Kac M and Mazur P 1965 J. Math. Phys. 6 504
[25] Lindenberg K and Seshadri V 1981 Physica A 109 483
[26] Bravo J M, Velasco R M and Sancho J M 1989 J. Math. Phys. 30 2023
[27] Adelman S A 1976 J. Chem. Phys. 64 124
[28] Mathews J H and Howell R W 2006 Complex Analysis: for Mathematics and Engineering, 5th edn. (Sudbury, MA: Jones and Bartlett Pub. Inc.)
[29] Muralidhar R, Jacobs D J, Ramkrishna D and Nakanishi H 1991 Phys. Rev. A 43 6503
[30] Uhlenbeck G E and Ornstein L S 1930 Phys. Rev. 36 823
[31] Wang M C and Uhlenbeck G E 1945 Rev. Mod. Phys. 17 323
[32] Bao J D and Zhuo Y Z 2003 Phys. Rev. C 67 064606
[33] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[34] Zhang X P and Bao J D 2003 Surf. Sci. 540 145
[35] Chaudhuri J R, Gangopadhyay G and Ray D S 1998 J. Chem. Phys. 109 5565
[36] Hernandez R 1999 J. Chem. Phys. 111 7701
[37] Astumian R D 1997 Science 276 917
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[3] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[6] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[7] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[8] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[9] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[10] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[11] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[12] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[13] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[14] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
[15] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
No Suggested Reading articles found!