Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057306    DOI: 10.1088/1674-1056/22/5/057306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature-controllable spin-polarized current and spin polarization in a Rashba three-terminal double-quantum-dot device

Hong Xue-Kun (洪学鹍), Yang Xi-Feng (杨希峰), Feng Jin-Fu (冯金福), Liu Yu-Shen (刘玉申)
Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500, China
Abstract  We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage. This device possesses a nonresonant tunneling channel and two resonant tunneling channels. The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot. We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient. This result is attribute to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region. Importantly, an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages. Therefore, the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot.
Keywords:  Rashba quantum dot      spin polarization      spin accumulation      temperature gradient  
Received:  17 October 2012      Revised:  26 November 2012      Accepted manuscript online: 
PACS:  73.63.Kv (Quantum dots)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247028, 11147162, and 61106126) and the Open Fund of Jiangsu Laboratory of Advanced Functional Materials, China (Grant No. 12KFJJ001).
Corresponding Authors:  Liu Yu-Shen     E-mail:  ysliu@cslg.edu.cn

Cite this article: 

Hong Xue-Kun (洪学鹍), Yang Xi-Feng (杨希峰), Feng Jin-Fu (冯金福), Liu Yu-Shen (刘玉申) Temperature-controllable spin-polarized current and spin polarization in a Rashba three-terminal double-quantum-dot device 2013 Chin. Phys. B 22 057306

[1] Vanderwiel W G, Franceschi S D, Elgerman J M, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
[2] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[3] Murayama A, Asahina T, Nishibayashi K, Souma I and Oka Y 2006 Appl. Phys. Lett. 88 023114
[4] Hickey H C, Damsgarrd C D, Holmes S N, Farrer I, Jones G A C, Ritchie D A, Jacobsen C S, Hansen J B and Pepper M 2008 Appl. Phys. Lett. 92 232101
[5] Datta S and Das S 1990 Appl. Phys. Lett. 56 665
[6] Rashba E I 1960 Fiz. Tverd Tela (Leningrad) 2 1224
[7] Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[8] Hirsh J E 1999 Phys. Rev. Lett. 83 1834
[9] Lü H F and Guo Y 1008 Appl. Phys. Lett. 92 062109
[10] Chi F and Zheng J 2008 Appl. Phys. Lett. 92 062106
[11] Chi F, Zheng J and Sun L L 2008 Appl. Phys. Lett. 92 172104
[12] Chi F, Zheng J and Sun L L 2008 J. Appl. Phys. 104 043707
[13] Gong W J, Zheng Y S and Lü T Q 2008 Appl. Phys. Lett. 92 042104
[14] An X T, Mu H Y, Xian L F and Liu J J 2012 Chin. Phys. B 21 077201
[15] Sánchez D and Serra L 2006 Phys. Rev. B 74 153313
[16] Chen K W and Chang C R 2008 Phys. Rev. B 78 235319
[17] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[18] Wesström J J 1999 Phys. Rev. Lett. 82 2564
[19] Kwapiński T, Taranko R and Taranko E 2005 Phys. Rev. B 72 125312
[20] Žak R A and Flensberg K 2008 Phys. Rev. B 77 045329
[21] Ťolea M, Dinu I V and Aldea A 2009 Phys. Rev. B 79 033306
[22] Liu Y S and Yang X F 2010 J. Appl. Phys. 108 023710
[23] Liu Y S, Zhang D B, Yang X F and Feng J F 2011 Nanotechnology 22 225201
[24] Wierzbicki M and świrkowicz R 2011 Phys. Rev. B 84 075410
[25] Karlström O, Linke H, Karlström G and Wacker A 2011 Phys. Rev. B 84 113415
[26] Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131
[27] Liu Y S and Chen Y C 2009 Phys. Rev. B 79 193101
[28] Liu Y S, Chen Y R and Chen Y C 2009 ACS Nano 3 3497
[29] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[30] Uchida K, Adachi H, An T, Ota T, Toda M, Hillebrands B, Maekawa S and Saitoh E 2011 Nature Mater. 10 737
[31] Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P and Myers R C 2010 Nature Mater. 9 898
[32] Adachi H, Ohe J, Takahashi S and Maekawa S 2011 Phys. Rev. B 83 094410
[33] Ohe J, Adachi H, Takahashi S and Maekawa S 2011 Phys. Rev. B 83 115118
[34] Dubi Y and Di Ventra M 2009 Phys. Rev. B 79 081302
[35] Hatami M, Bauer G W, Zhang Q F and Kelly P J 2009 Phys. Rev. B 79 174426
[36] Šwirkowicz R, Wierzbicki M and Barnaś J 2009 Phys. Rev. B 80 195409
[37] Liu Y S, Chi F, Yang X F and Feng J F 2011 J. Appl. Phys. 109 053712
[38] Liu Y S, Hong X K, Feng J F and Yang X F 2011 Nanoscale Res. Lett. 6 618
[39] Qi F H, Ying Y B and Jin G J 2011 Phys. Rev. B 83 075310
[40] Xue H J, Lü T Q, Zhang H C, Yin H T, Cui L and He Z L 2011 Chin. Phys. B 20 027301
[41] Xue H J, Lü T Q, Zhang H C, Yin H T, Cui L and Z L He 2012 Chin. Phys. B 21 037201
[42] Wang Q, Xie H Q, Jiao H J, Li Z J and Nie Y H 2012 Chin. Phys. B 21 117310
[43] Trocha P and Barnaś J 2012 Phys. Rev. B 85 085408
[44] Holleitner A W, Decker C R, Qin H, Eberl K and Blick R H 2001 Phys. Rev. Lett. 87 256802
[45] Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
[46] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
[47] Mireles F and Kirczenow G 2001 Phys. Rev. B 64 024426
[48] Haug H and Jauho A P 2007 Quantum Kinetics in Transport and Optics of Semiconductors (2nd edn.) (Berlin: Springer)
[49] Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312
[50] Sun Q F, Guo H and Wang J 2003 Phys. Rev. Lett. 90 258301
[1] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[2] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[3] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[4] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[5] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[6] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[7] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[8] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[9] Spin polarization and dispersion effects in emergence of roaming transition state for nitrobenzene isomerization
Zhi-Yuan Zhang(张志远), Wan-Run Jiang(姜万润), Bo Wang(王波), Yan-Qiang Yang(杨延强), Zhi-Gang Wang(王志刚). Chin. Phys. B, 2018, 27(1): 013102.
[10] Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate
T F Xu(徐天赋). Chin. Phys. B, 2018, 27(1): 016702.
[11] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[12] Analysis of melt ejection during long pulsed laser drilling
Ting-Zhong Zhang(张廷忠), Zhi-Chao Jia(贾志超), Hai-Chao Cui(崔海超), De-Hua Zhu(朱德华), Xiao-Wu Ni(倪晓武), Jian Lu(陆健). Chin. Phys. B, 2016, 25(5): 054206.
[13] Current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling
Nai-Qing Liu(刘乃清), Li-Jie Huang(黄立捷), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2016, 25(2): 027201.
[14] Optical nuclear spin polarization in quantum dots
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟). Chin. Phys. B, 2016, 25(10): 108506.
[15] Effects of temperature gradient on the interface microstructure and diffusion of diffusion couples: Phase-field simulation
Li Yong-Sheng (李永胜), Wu Xing-Chao (吴兴超), Liu Wei (刘苇), Hou Zhi-Yuan (侯志远), Mei Hao-Jie (梅浩杰). Chin. Phys. B, 2015, 24(12): 126401.
No Suggested Reading articles found!