CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Temperature-controllable spin-polarized current and spin polarization in a Rashba three-terminal double-quantum-dot device |
Hong Xue-Kun (洪学鹍), Yang Xi-Feng (杨希峰), Feng Jin-Fu (冯金福), Liu Yu-Shen (刘玉申) |
Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500, China |
|
|
Abstract We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage. This device possesses a nonresonant tunneling channel and two resonant tunneling channels. The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot. We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient. This result is attribute to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region. Importantly, an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages. Therefore, the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot.
|
Received: 17 October 2012
Revised: 26 November 2012
Accepted manuscript online:
|
PACS:
|
73.63.Kv
|
(Quantum dots)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11247028, 11147162, and 61106126) and the Open Fund of Jiangsu Laboratory of Advanced Functional Materials, China (Grant No. 12KFJJ001). |
Corresponding Authors:
Liu Yu-Shen
E-mail: ysliu@cslg.edu.cn
|
Cite this article:
Hong Xue-Kun (洪学鹍), Yang Xi-Feng (杨希峰), Feng Jin-Fu (冯金福), Liu Yu-Shen (刘玉申) Temperature-controllable spin-polarized current and spin polarization in a Rashba three-terminal double-quantum-dot device 2013 Chin. Phys. B 22 057306
|
[1] |
Vanderwiel W G, Franceschi S D, Elgerman J M, Tarucha S and Kouwenhoven L P 2002 Rev. Mod. Phys. 75 1
|
[2] |
Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
[3] |
Murayama A, Asahina T, Nishibayashi K, Souma I and Oka Y 2006 Appl. Phys. Lett. 88 023114
|
[4] |
Hickey H C, Damsgarrd C D, Holmes S N, Farrer I, Jones G A C, Ritchie D A, Jacobsen C S, Hansen J B and Pepper M 2008 Appl. Phys. Lett. 92 232101
|
[5] |
Datta S and Das S 1990 Appl. Phys. Lett. 56 665
|
[6] |
Rashba E I 1960 Fiz. Tverd Tela (Leningrad) 2 1224
|
[7] |
Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
|
[8] |
Hirsh J E 1999 Phys. Rev. Lett. 83 1834
|
[9] |
Lü H F and Guo Y 1008 Appl. Phys. Lett. 92 062109
|
[10] |
Chi F and Zheng J 2008 Appl. Phys. Lett. 92 062106
|
[11] |
Chi F, Zheng J and Sun L L 2008 Appl. Phys. Lett. 92 172104
|
[12] |
Chi F, Zheng J and Sun L L 2008 J. Appl. Phys. 104 043707
|
[13] |
Gong W J, Zheng Y S and Lü T Q 2008 Appl. Phys. Lett. 92 042104
|
[14] |
An X T, Mu H Y, Xian L F and Liu J J 2012 Chin. Phys. B 21 077201
|
[15] |
Sánchez D and Serra L 2006 Phys. Rev. B 74 153313
|
[16] |
Chen K W and Chang C R 2008 Phys. Rev. B 78 235319
|
[17] |
Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
|
[18] |
Wesström J J 1999 Phys. Rev. Lett. 82 2564
|
[19] |
Kwapiński T, Taranko R and Taranko E 2005 Phys. Rev. B 72 125312
|
[20] |
Žak R A and Flensberg K 2008 Phys. Rev. B 77 045329
|
[21] |
Ťolea M, Dinu I V and Aldea A 2009 Phys. Rev. B 79 033306
|
[22] |
Liu Y S and Yang X F 2010 J. Appl. Phys. 108 023710
|
[23] |
Liu Y S, Zhang D B, Yang X F and Feng J F 2011 Nanotechnology 22 225201
|
[24] |
Wierzbicki M and świrkowicz R 2011 Phys. Rev. B 84 075410
|
[25] |
Karlström O, Linke H, Karlström G and Wacker A 2011 Phys. Rev. B 84 113415
|
[26] |
Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131
|
[27] |
Liu Y S and Chen Y C 2009 Phys. Rev. B 79 193101
|
[28] |
Liu Y S, Chen Y R and Chen Y C 2009 ACS Nano 3 3497
|
[29] |
Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
|
[30] |
Uchida K, Adachi H, An T, Ota T, Toda M, Hillebrands B, Maekawa S and Saitoh E 2011 Nature Mater. 10 737
|
[31] |
Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P and Myers R C 2010 Nature Mater. 9 898
|
[32] |
Adachi H, Ohe J, Takahashi S and Maekawa S 2011 Phys. Rev. B 83 094410
|
[33] |
Ohe J, Adachi H, Takahashi S and Maekawa S 2011 Phys. Rev. B 83 115118
|
[34] |
Dubi Y and Di Ventra M 2009 Phys. Rev. B 79 081302
|
[35] |
Hatami M, Bauer G W, Zhang Q F and Kelly P J 2009 Phys. Rev. B 79 174426
|
[36] |
Šwirkowicz R, Wierzbicki M and Barnaś J 2009 Phys. Rev. B 80 195409
|
[37] |
Liu Y S, Chi F, Yang X F and Feng J F 2011 J. Appl. Phys. 109 053712
|
[38] |
Liu Y S, Hong X K, Feng J F and Yang X F 2011 Nanoscale Res. Lett. 6 618
|
[39] |
Qi F H, Ying Y B and Jin G J 2011 Phys. Rev. B 83 075310
|
[40] |
Xue H J, Lü T Q, Zhang H C, Yin H T, Cui L and He Z L 2011 Chin. Phys. B 20 027301
|
[41] |
Xue H J, Lü T Q, Zhang H C, Yin H T, Cui L and Z L He 2012 Chin. Phys. B 21 037201
|
[42] |
Wang Q, Xie H Q, Jiao H J, Li Z J and Nie Y H 2012 Chin. Phys. B 21 117310
|
[43] |
Trocha P and Barnaś J 2012 Phys. Rev. B 85 085408
|
[44] |
Holleitner A W, Decker C R, Qin H, Eberl K and Blick R H 2001 Phys. Rev. Lett. 87 256802
|
[45] |
Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
|
[46] |
Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
|
[47] |
Mireles F and Kirczenow G 2001 Phys. Rev. B 64 024426
|
[48] |
Haug H and Jauho A P 2007 Quantum Kinetics in Transport and Optics of Semiconductors (2nd edn.) (Berlin: Springer)
|
[49] |
Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312
|
[50] |
Sun Q F, Guo H and Wang J 2003 Phys. Rev. Lett. 90 258301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|