Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 054206    DOI: 10.1088/1674-1056/25/5/054206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis of melt ejection during long pulsed laser drilling

Ting-Zhong Zhang(张廷忠)1, Zhi-Chao Jia(贾志超)1, Hai-Chao Cui(崔海超)2, De-Hua Zhu(朱德华)3, Xiao-Wu Ni(倪晓武)1, Jian Lu(陆健)1
1. School of Science, Nanjing University of Science & Technology, Nanjing 210094, China;
2. Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3. College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou 325035, China
Abstract  

In pulsed laser drilling, melt ejection greatly influences the keyhole shape and its quality as well, but its mechanism has not been well understood. In this paper, numerical simulation and experimental investigations based on 304 stainless steel and aluminum targets are performed to study the effects of material parameters on melt ejection. The numerical method is employed to predict the temperatures, velocity fields in the solid, liquid, and vapour front, and melt pool dynamics of targets as well. The experimental methods include the shadow-graphic technique, weight method, and optical microscope imaging, which are applied to real-time observations of melt ejection phenomena, measurements of collected melt and changes of target mass, observations of surface morphology and the cross-section of the keyhole, respectively. Numerical and experimental results show that the metallic material with high thermal diffusivity like aluminum is prone to have a thick liquid zone and a large quantity of melt ejection. Additionally, to the best of our knowledge, the liquid zone is used to illustrate the relations between melt ejection and material thermal diffusivity for the first time. The research result in this paper is useful for manufacturing optimization and quality control in laser-material interaction.

Keywords:  laser drilling      melt ejection      temperature gradient      liquid zone  
Received:  23 November 2015      Revised:  14 January 2016      Accepted manuscript online: 
PACS:  42.62.-b (Laser applications)  
  02.70.Dh (Finite-element and Galerkin methods)  
  02.60.Cb (Numerical simulation; solution of equations)  
  42.70.Hj (Laser materials)  
Fund: 

Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. KYLX0341) and the National Natural Science Foundation of China (Grant No. 61405147).

Corresponding Authors:  Jian Lu     E-mail:  lujian@njust.edu.cn

Cite this article: 

Ting-Zhong Zhang(张廷忠), Zhi-Chao Jia(贾志超), Hai-Chao Cui(崔海超), De-Hua Zhu(朱德华), Xiao-Wu Ni(倪晓武), Jian Lu(陆健) Analysis of melt ejection during long pulsed laser drilling 2016 Chin. Phys. B 25 054206

[1] Yang X D, Xu Z Z, Leng Y X, Lu H H, Lin L H, Zhang Z Q, Li R X, Zhang W Q, Yin D J and Tang B 2002 Opt. Lett. 27 1135
[2] An R, Li Y, Dou Y P, Fang Y, Yang H and Gong Q H 2004 Chin. Phys. Lett. 21 2465
[3] Wang J, Wang H P, Lu F G, Carlson B E and Sigler D R 2015 Int. J. Heat Mass Transfer 89 1061
[4] Liu Y, Zhu H N, Pei Z D, Kong Y F and Xu J J 2015 Chin. Phys. B 24 056802
[5] Pan D, Huang Z C, Huang J K, Wang X X and Huang Y 2015 Acta Phys. Sin. 64 108102 (in Chinese)
[6] Voisey K T and Clyne T W 2004 Surf. Coat. Technol. 176 296
[7] Duan W Q, Wang K D, Dong X, Mei X S, Wang W J and Fan Z J 2015 Int. J. Adv. Manu. Technol. 76 1529
[8] Allmen M V 1976 J. Appl. Phys. 47 5460
[9] Berrie P G and Birkett F N 1980 Opt. Laser. Eng. 1 107
[10] Low D K Y, Li L and Byrd P J 2003 J. Mater. Process. Technol. 139 71
[11] Low D K Y and Li L 2001 Opt. Laser Technol. 33 515
[12] Low D K Y, Li L and Byrd P J 2000 Opt. Laser Technol. 32 347
[13] Voisey K T, Kudesia S S, Rodden W S O, Hand D P, Jones J D C and Clyne T W 2003 Mat. Sci. Eng. A 356 414
[14] Trippe L,Willach J, Kreutz E W, Schulz W, Petereit J, Kaierle S and Poprawe R 2004 Fifth International Symposium on Laser Precision Microfabrication, May 11-14, 2004, Nara, Japan, pp. 609-615
[15] Chen M, Wang Y, Yu G, Lan D and Zheng Z Y 2013 Appl. Phys. Lett. 103 194102
[16] Zhang Y, Li S C, Chen G Y and Mazumder J 2013 Opt. Laser Technol. 48 405
[17] Low D K Y, Li L and Byrd P J 2002 J. Manuf. Sci. E-T ASME 124 852
[18] Song L S, Shi G Q and Li Z G 2006 Acta Armamentarii 27 879
[19] Muhammad N, Rogers B D and Li L 2013 J. Phys. D: Appl. Phys. 46 095101
[20] Solana P, Kapadia P, Dowden J, Rodden W S O, Kudesia S S, Hand D P and Jones J D C 2001 Opt. Commun. 191 97
[21] Shen Z H, Zhang S Y, Lu J and Ni X W 2001 Opt. Laser Technol. 33 533
[22] Yang L X, Peng X F and Wang B X 2001 Int. J. Heat Mass Transfer 44 4465
[23] Xu B Q, Shen Z H, Lu J, Ni X W and Zhang S Y 2003 Int. J. Heat Mass Transfer . 46 4963
[24] Zang Y N, Ni X W and Han B 2014 J. Appl. Phys. 116 013104
[25] Zhang Y M, Shen Z H and Ni X W 2014 Int. J. Heat Mass Transfer 73 429
[26] Zhang T Z, Ni X W and Lu J 2015 Chin. Opt. Lett. 13 081403
[27] Bandyopadhyay S, Sundar J K S, Sundararajan G and Joshi S V 2002 J. Mater. Process. Technol. 127 83
[28] Hugger F, Hofmann K, Kohl S, Dobler M and Schmidt M 2015 Weld Word 59 165
[29] Samant A N, Dui B S, Paital S R, Kumar S and Dahotre N B 2009 J. Mater. Process. Technol. 209 5060
[30] He X L, Song L J, Yu G and Mazumder J 2011 Appl. Surf. Sci. 258 898
[31] Hao M Z and Sun Y W 2013 Int. J. Heat Mass Transfer 64 352
[32] Quintero F, Varas F, Pou J, Lusquinos F, Boutinguiza M, Soto R and Amor M P 2005 J. Phys. D: Appl. Phys. 38 655
[33] Wang X J, Wang H P, Lu F G, Carlson B E and Wu Y X 2014 Int. J. Adv. Manuf. Technol. 73 73
[34] Pang S Y, Chen X, Zhou J X, Shao X Y and Wang C M 2015 Opt. Laser. Eng. 74 47
[35] Sussman M, Smereka P and Osher S 1994 J. Comput. Phys. 114 146
[36] Ki H, Mohanty P S and Mazumder J 2001 J. Phys. D: Appl. Phys. 34 364
[37] Pang S Y, Chen L L, Zhou J X, Yin Y J and Chen T 2011 J. Phys. D: Appl. Phys. 44 025301
[38] Li T Q, Wu C S, Feng Y H, and Zheng L C 2012 Int. J. Heat Fluid Fl. 34 117
[39] Tan W, Bailey N S and Shin Y C 2013 J. Phys. D: Appl. Phys. 46 055501
[40] Courtois M, Carin M, Masson P L, Gaied S and Balabane M 2014 J. Laser Appl. 26 042001
[41] Hirano K, Fabbro R and Muller M 2011 J. Phys. D: Appl. Phys. 44 435402
[42] Allmen M V 1987 Laser-beam Interactions with Materials (Berlin: Springer) pp. 163-165
[43] Vora H D, Santhanakrishnan S, Harimkar S P, Boetcher S K S and Dahotre N B 2012 J. Eur. Ceram. Soc. 32 4205
[44] Rai R, Elmer J W, Palmer T A and DebRoy T 2007 J. Phys. D: Appl. Phys. 40 5753
[45] Wang R P, Lei Y P and Shi Y W 2011 Opt. Laser Technol. 43 870
[46] Tunna L, ONeill W, Khan A and Sutcliffe C 2005 Opt. Laser. Eng. 43 937
[47] Ng G K L, Crouse P L and Li L 2006 Int. J. Heat Mass Transfer 49 1358
[48] Riveiro A, Quintero F, Lusquinos F, Comesana R and Pou J 2011 J. Phys. D: Appl. Phys. 44 135501
[49] Voisey K T, Cheng C F and Clyne T W 2000 Mat. Res. Soc. Symp. Proc. (Cambridge: Cambridge University Press) pp. J5-6
[1] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[2] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[3] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[4] Effects of temperature gradient on the interface microstructure and diffusion of diffusion couples: Phase-field simulation
Li Yong-Sheng (李永胜), Wu Xing-Chao (吴兴超), Liu Wei (刘苇), Hou Zhi-Yuan (侯志远), Mei Hao-Jie (梅浩杰). Chin. Phys. B, 2015, 24(12): 126401.
[5] Temperature-controllable spin-polarized current and spin polarization in a Rashba three-terminal double-quantum-dot device
Hong Xue-Kun (洪学鹍), Yang Xi-Feng (杨希峰), Feng Jin-Fu (冯金福), Liu Yu-Shen (刘玉申). Chin. Phys. B, 2013, 22(5): 057306.
[6] Effects of carbon convection field on large diamond growth under high-pressure high-temperature conditions
Hu Mei-Hua (胡美华), Li Shang-Sheng (李尚升), Ma Hong-An (马红安), Su Tai-Chao (宿太超), Li Xiao-Lei (李小雷), Hu Qiang (胡强), Jia Xiao-Peng (贾晓鹏). Chin. Phys. B, 2012, 21(9): 098101.
[7] Generating and reversing spin accumulation by temperature gradient in a quantum dot attached to ferromagnetic leads
Bai Xu-Fang(白旭芳), Chi Feng(迟锋), Zheng Jun(郑军), and Li Yi-Nan(李亦楠) . Chin. Phys. B, 2012, 21(7): 077301.
[8] Growth of gem-grade nitrogen-doped diamond crystals heavily doped with the addition of Ba(N3)2
Huang Guo-Feng(黄国锋), Jia Xiao-Peng(贾晓鹏), Li Yong(李勇), Hu Mei-Hua(胡美华), Li Zhan-Chang(李战厂), Yan Bing-Min(颜丙敏), and Ma Hong-An(马红安). Chin. Phys. B, 2011, 20(7): 078103.
[9] Synthesis and characterization of p-type boron-doped IIb diamond large single crystals
Li Shang-Sheng(李尚升), Ma Hong-An(马红安), Li Xiao-Lei(李小雷), Su Tai-Chao(宿太超), Huang Guo-Feng(黄国锋), Li Yong(李勇), and Jia Xiao-Peng(贾晓鹏). Chin. Phys. B, 2011, 20(2): 028103.
[10] Synthesis of large diamond crystals containing high-nitrogen concentration at high pressure and high temperature using Ni-based solvent by temperature gradient method
Huang Guo-Feng(黄国锋), Jia Xiao-Peng(贾晓鹏), Li Shang-Sheng(李尚升), Zhang Ya-Fei(张亚飞), Li Yong(李勇), Zhao Ming(赵明), and Ma Hong-An(马红安). Chin. Phys. B, 2010, 19(11): 118101.
[11] Study of electron temperature gradient instability in toroidal plasmas with negative magnetic shear
Jian Guang-De (简广德), Dong Jia-Qi (董家齐). Chin. Phys. B, 2004, 13(6): 898-904.
No Suggested Reading articles found!