Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057303    DOI: 10.1088/1674-1056/22/5/057303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optimized geometry and electronic structure of graphyne-like silicyne nanoribbons

Pei Yang (裴洋), Wu Hai-Bin (武海斌)
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Silicyne, a silicon allotrope, which is closely related to silicene and has the graphyne-like structure, is theoretically investigated in this work. Its optimized geometry and electronic band structure are calculated by means of the first-principles frozen-core projector-augmented wave method implemented in the Vienna ab initio simulation package (VASP). We find that the lattice parameter is 9.5 Å, the silicon chain between hexagons is composed of disilynic linkages (-Si≡Si-) rather than cumulative linkages (=Si=Si=), and the binding energy is -3.41 eV per atom. The band structure is calculated by adopting the generalized gradient approximation and hybrid functionals. The band gap produced by the HSE06 functional is 0.73 eV, which is nearly triple as much as that by the generalized gradient approximation of Perdew-Burke-Ernzerhof functional.
Keywords:  silicyne      optimized geometry      electronic structure      first-principles calculation  
Received:  27 September 2012      Revised:  24 December 2012      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Corresponding Authors:  Pei Yang     E-mail:  ypei@semi.ac.cn

Cite this article: 

Pei Yang (裴洋), Wu Hai-Bin (武海斌) Optimized geometry and electronic structure of graphyne-like silicyne nanoribbons 2013 Chin. Phys. B 22 057303

[1] Baughman R H, Eckhardt H and Kertesz M 1987 J. Chem. Phys. 87 6687
[2] Kang J, Li J B, Wu F M, Li S S and Xia J B 2011 J. Phys. Chem. C 115 20466
[3] Narita N, Nagai S, Suzuki S and Nakao K 1998 Phys. Rev. B 58 11009
[4] Pei Y 2012 Physica B 407 4436
[5] Li C, Li J B, Wu F M, Li S S, Xia J B and Wang L W 2011 J. Phys. Chem. C 115 23221
[6] Yue Q, Chang S L, Kang J, Tan J C, Qin S Q and Li J B 2012 J. Phys. Chem. C 136 244702
[7] Kang J, Wu F M and Li J B 2012 J. Phys.: Condens. Mat. 24 165301
[8] Guo Y Q, Huang R, Song J, Wang X, Song C and Zhang Y X 2012 Chin. Phys. B 21 066106
[9] Chen Y S, Xu Y H, Gu J H, Lu J X, Yang S E and Gao X Y 2010 Chin. Phys. B 19 087206
[10] West R, Fink M and Michl J 1981 Science 214 1343
[11] Kara A, Enriquez H, Seitsonen A P, Lew Yan Voon L C, Vizzini S, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1
[12] Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Lay G L 2010 Appl. Phys. Lett. 96 183102
[13] Padova P D, Quaresima C, Ottaviani C, Sheverdyaeva P M, Moras P, Carbone C, Topwal D, Olivieri B, Kara A, Oughaddou H, Aufray B and Lay G L 2010 Appl. Phys. Lett. 96 261905
[14] Enriquez H, Mayne A, Kara A, Vizzini S, Roth S, Lalmi B, Seitsonen A P, Aufray B, Greber T, Belkhou R, Dujardin G and Oughaddou H 2012 Appl. Phys. Lett. 101 021605
[15] Koseki S and Gordon M S 1988 J. Phys. Chem. 92 364
[16] Colegrove B T and Schaefer III H F 1990 J. Phys. Chem. 94 5593
[17] Thies B S, Grev R S and Schaefer III H F 1987 Chem. Phys. Lett. 140 355
[18] Raabe G and Michl J 1985 Chem. Rev. 85 419
[19] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[20] Blochl P E 1994 Phys. Rev. B 50 17953
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[23] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Fink M, Michalczyk M, Haller J, West R and Michl J 1983 J. Chem. Soc. Chem. Commun. 18 1010
[26] Ding Y and Wang Y L 2012 Appl. Phys. Lett. 100 083102
[27] Deák P, Aradi B, Frauenheim T, Janzén E and Gali A 2010 Phys. Rev. B 81 153203
[28] Zhang P, Li X D, Hu C H, Wu S Q and Zhu Z Z 2012 Phys. Lett. A 376 1230
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
No Suggested Reading articles found!