Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050510    DOI: 10.1088/1674-1056/22/5/050510
GENERAL Prev   Next  

New exact solutions of (3+1)-dimensional Jimbo-Miwa system

Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义)
College of Sciences, Lishui University, Lishui 323000, China
Abstract  By using the (G'/G)-expansion method and the variable separation method, a new family of exact solutions of the (3+1)-dimensional Jimbo-Miwa system is obtained. Based on the derived solitary wave solutions, we obtain some special localized excitations and study the interactions between two solitary waves of the system.
Keywords:  (3+1)-dimensional Jimbo-Miwa system      (G'/G)-expansion method      exact solutions      interactions between two solitary waves  
Received:  03 December 2012      Revised:  26 December 2012      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by the Scientific Research Foundation of Lishui University, China (Grant No. KZ201110).
Corresponding Authors:  Chen Yuan-Ming     E-mail:  chenyuanming98@163.com

Cite this article: 

Chen Yuan-Ming (陈元明), Ma Song-Hua (马松华), Ma Zheng-Yi (马正义) New exact solutions of (3+1)-dimensional Jimbo-Miwa system 2013 Chin. Phys. B 22 050510

[1] Lou S Y and Tang X Y 2002 Chin. Phys. Lett. 19 769
[2] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[3] Tang X Y and Lou S Y 2002 Phys. Rev. E 66 046601
[4] Wang S, Tang X Y and Lou S Y 2004 Chaos Soliton. Fract. 21 231
[5] Lou S Y 1990 Phys. Lett. A 151 133
[6] Tang X Y, Lin J and Lou S Y 2001 Commun. Theor. Phys. 35 399
[7] Lou S Y and Tang X Y 2001 Chin. Phys. 10 897
[8] Lou S Y, Tang X Y and Lin J 2000 J. Math. Phys. 41 8286
[9] Ma S H and Fang J P 2006 Acta Phys. Sin. 55 5611 (in Chinese)
[10] Chen Y M, Ma S H and Ma Z Y 2012 Chin. Phys. B 21 050510
[11] Ma Z Y and Ma S H 2012 Chin. Phys. B 21 030507
[12] Ma S H, Qiang J Y and Fang J P 2007 Acta Phys. Sin. 56 620 (in Chinese)
[13] Ma S H, Fang J P and Zhu H P 2007 Acta Phy. Sin. 56 4319 (in Chinese)
[14] Zhang S L, Zhu X N, Wang Y M and Lou S Y 2008 Commun. Theor. Phys. 49 829
[15] Zhang D J 2003 Chaos Soliton. Fract. 18 31
[16] Zheng C L and Chen L Q 2005 Chaos Soliton. Fract. 24 1347
[17] Wang H and Li B 2011 Chin. Phys. B 20 040203
[18] Bekir A 2008 Phys. Lett. A 372 3400
[19] Wang M L, Li X Z and Zhang J L 2008 Phys. Lett. A 372 417
[20] Zhang S and Tong J L 2008 Phys. Lett. A 372 2254
[21] Zhang J, Wei X L and Lu Y J 2008 Phys. Lett. A 372 3653
[22] Zayed E M Z and Gepreel K A 2009 J. Math. Phys. 50 013502
[23] Li B Q, Ma Y L, Wang C, Xu M P and Li Y 2011 Acta Phys. Sin. 60 060203 (in Chinese)
[24] Li B Q, Ma Y L and Xu M P 2010 Acta Phys. Sin. 59 1409 (in Chinese)
[25] Chen Y M and Ma S H 2012 Appl. Math. 3 813
[26] Ma S H, Fang J P, Hong B H and Zheng C L 2008 Commun. Theor. Phys. 49 1245
[27] Fang J P, Ren Q B and Zheng C L 2005 Z. Naturforsch 60a 245
[28] Fang J P and Zheng C L 2005 Chin. Phys. 14 669
[29] Jimbo M and Miwa T 1983 Publ. Res. Inst. Math. 19 943
[30] Dorrizz B, Grammaticos B, Ramani A and Winternitz P 1986 J. Math. Phys. 27 2848
[31] Weiss J, Tabor M and Carnavale G 1983 J. Math. Phys. 24 522
[32] Bai C L and Zhao H 2004 Commun. Theor. Phys. 41 875
[1] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[2] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[5] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[6] Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system
Zhu Wei-Ting (朱维婷), Ma Song-Hua (马松华), Fang Jian-Ping (方建平), Ma Zheng-Yi (马正义), Zhu Hai-Ping (朱海平). Chin. Phys. B, 2014, 23(6): 060505.
[7] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[8] Exact solutions of (3+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq equations
Liu Ping (刘萍), Li Zi-Liang (李子良). Chin. Phys. B, 2013, 22(5): 050204.
[9] Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2013, 22(5): 050201.
[10] Novel exact solutions of coupled nonlinear Schrödinger equations with time–space modulation
Chen Jun-Chao (陈俊超), Li Biao (李彪), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(11): 110306.
[11] Skyrmion crystals in pseudo-spin-1/2 Bose–Einstein condensates
Zhang Cong (张聪), Guo Wen-An (郭文安), Feng Shi-Ping (冯世平), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2013, 22(11): 110308.
[12] On certain new exact solutions of the Einstein equations for axisymmetric rotating fields
Lakhveer Kaur, R. K. Gupta. Chin. Phys. B, 2013, 22(10): 100203.
[13] New exact solutions of Einstein–Maxwell equations for magnetostatic fields
Nisha Goyal, R. K. Gupta. Chin. Phys. B, 2012, 21(9): 090401.
[14] Soliton excitations and chaotic patterns for the (2+1)-dimensional Boiti–Leon–Pempinelli system
Yang Zheng (杨征), Ma Song-Hua (马松华), Fang Jian-Ping (方建平). Chin. Phys. B, 2011, 20(6): 060506.
[15] Constructing infinite sequence exact solutions of nonlinear evolution equations
Taogetusang(套格图桑) and Narenmandula(那仁满都拉) . Chin. Phys. B, 2011, 20(11): 110203.
No Suggested Reading articles found!