Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 048701    DOI: 10.1088/1674-1056/22/4/048701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Avian magnetoreception model realized by coupling a magnetite-based mechanism with a radical-pair-based mechanism

Lü Yan (吕琰)a, Song Tao (宋涛)a b
a Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
b France-China Bio-Mineralization and Nano-Structures Laboratory (BioMNSL), Beijing 100190, China
Abstract  Many animal species are verified to use geomagnetic field for their navigation, but the biophysical mechanism of magnetoreception has remained enigmatic. In this paper, we present a special biophysical model that consists of magnetite-based and radical-pair-based mechanisms for avian magnetoreception. The amplitude of the resultant magnetic field around the magnetic particles corresponds to the geomagnetic field direction and affects the yield of singlet/triplet state products in the radical-pair reactions. Therefore, in the proposed model, the singlet/triplet state product yields are related to the geomagnetic field information for orientational detection. The resultant magnetic fields corresponding to two materials with different magnetic properties are analyzed under different geomagnetic field directions. The results show that ferromagnetic particles in organisms can provide more significant changes in singlet state products than superparamagnetic particles, and the period of variation for the singlet state products with an included angle in the geomagnetic field is approximately 180° when the magnetic particles are ferromagnetic materials, consistent with the experimental results obtained from avian magnetic compass. Further, the calculated results of the singlet state products in a reception plane show that the proposed model can explain the avian magnetoreception mechanism with an inclination compass.
Keywords:  magnetoreception      orientation      geomagnetic field      magnetic particles      radical pair  
Received:  08 August 2012      Revised:  15 October 2012      Accepted manuscript online: 
PACS:  87.50.-a (Effects of electromagnetic and acoustic fields on biological systems)  
  87.50.dc  
  02.90.+p (Other topics in mathematical methods in physics)  
Fund: Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 51037006), the State Key Development Program for Basic Research of China (Grant No. 2011CB503702), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51207155).
Corresponding Authors:  Song Tao     E-mail:  songtao@mail.iee.ac.cn

Cite this article: 

Lü Yan (吕琰), Song Tao (宋涛) Avian magnetoreception model realized by coupling a magnetite-based mechanism with a radical-pair-based mechanism 2013 Chin. Phys. B 22 048701

[1] Wiltschko W and Merkel F 1966 Verh. dt. Zool. Ges. 59 362
[2] Johnsen S and Lohmann K J 2005 Nat. Rev. Neurosci. 6 703
[3] Kirschvink J L, Kobayashikirschvink A, Diazricci J C and Kirschvink S J 1992 Bioelectromagnetics 101
[4] Cadiou H and McNaughton P A 2010 J. R. Soc. Interface 7 S193
[5] Shcherbakov V P and Winklhofer M 2010 Phys. Rev. E 81 031921
[6] Schulten K, Swenberg C E and Weller A 1978 Z. Phys. Chem. Neue. Fol. 111 1
[7] Ritz T, Adem S and Schulten K 2000 Biophys. J. 78 707
[8] Solov'yov I A, Mouritsen H and Schulten K 2010 Biophys. J. 99 40
[9] Blakemore R 1975 Science 190 377
[10] Walker M M, Diebel C E, Haugh C V, Pankhurst P M, Montgomery J C and Green C R 1997 Nature 390 371
[11] Eder S H K, Cadiou H, Muhamad A, McNaughton P A, Kirschvink J L and Winklhofer M 2012 PNAS 109 12022
[12] Zhao J G, Wen G H, Liu C L, Liu C H and Zhan W S 1999 Acta Phys. Sin. 48 973 (in Chinese)
[13] Kirschvink J L 1997 Nature 390 339
[14] Kirschvink J L, Walker M M and Diebel C E 2001 Curr. Opin. Neurobiol. 11 462
[15] Davila A F, Fleissner G, Winklhofer M and Petersen N 2003 Phys. Chem. Earth. 28 647
[16] Fleissner G, Stahl B, Thalau P, Falkenberg G and Fleissner G 2007 Naturwissenschaften. 94 631
[17] Solov'yov I A and Greiner W 2007 Biophys. J. 93 1493
[18] Beason R C and Semm P 1987 Neurosci. Lett. 80 229
[19] Beason R C and Semm P 1996 J. Exp. Biol. 199 1241
[20] Leask M J M 1977 Nature 267 144
[21] Wiltschko R and Wiltschko W 1998 Naturwissenschaften. 85 164
[22] Wiltschko W, Munro U, Ford H and Wiltschko R 1993 Nature 364 525
[23] Zapka M, Heyers D, Hein C M, Engels S, Schneider N L, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild J M and Mouritsen H 2009 Nature 461 1274
[24] Salikhov K M, Molin Y N, Sagdeev R A and Buchachenko A L 1984 Elsevier. 137 51
[25] Steiner U E and Ulrich T 1989 Chem. Rev. 89 51
[26] Timmel C R, Till U, Brocklehurst B, McLauchlan K A and Hore P J 1998 Mol. Phys. 95 71
[27] Meng X G, Wang J S and Liang B L 2010 Chin. Phys. B 19 044202
[28] Jia B Y, Yu Z Y, Liu Y M, Han L H, Yao W J, Feng H and Ye H 2011 Chin. Phys. B 20 067301
[29] Timmel C R, Cintolesi F, Brocklehurst B and Hore P J 2001 Chem. Phys. Lett. 334 387
[30] Rodgers C T and Hore P J 2009 P. Natl. Acad. Sci. USA 106 353
[31] Ritz T, Ahmad M, Mouritsen H, Wiltschko R and Wiltschko W 2010 J. R. Soc. Interface 7 S135
[32] Lau J C S, Wagner-Rundell N, Rodgers C T, Green N J B and Hore P J 2010 J. R. Soc. Interface 7 S257
[33] Groff R P, Suna A, Avakian P and Merrifie R 1974 Phys. Rev. B 9 2655
[34] Bube W, Michelbeyerle M E, Haberkorn R and Steffens E 1977 Chem. Phys. Lett. 50 389
[35] Boxer S G, Chidsey C E D and Roelofs M G 1982 P. Natl. Acad. Sci-Biol. 79 4632
[36] Vandijk B, Vandervos R and Hoff A J 1994 Chem. Phys. Lett. 226 206
[37] Maeda K, Henbest K B, Cintolesi F, Kuprov I, Rodgers C T, Liddell P A, Gust D, Timmel C R and Hore P J 2008 Nature 453 387
[38] Niessner C, Denzau S, Gross J C, Peichl L, Bischof H J, Fleissner G, Wiltschko W and Wiltschko R 2011 Plos. One 6 e20091
[39] Maeda K, Robinson A J, Henbest K B, Hogben H J, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel C R and Hore P J 2012 P. Natl. Acad. Sci. USA 109 4774
[40] Wiltschko W and Wiltschko R 2005 J. Comp. Physiol. A 191 675
[41] Binhi V N 2006 Bioelectromagnetics 27 58
[42] Binhi V N 2008 Int. J. Radiat. Biol. 84 569
[43] Cohen A E 2009 J. Phys. Chem. A 113 11084
[44] Yang N and Cohen A E 2010 Opt. Express 18 25461
[45] Cai J M, Guerreschi G G and Briegel H J 2010 Phys. Rev. Lett. 104 220502
[46] Mouritsen H and Hore P J 2012 Curr. Opin. Neurobiol. 22 343
[47] Winklhofer M and Kirschvink J L 2010 J. R. Soc. Interface 7 S273
[48] Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P, Mouritsen H, Heyers D, Wellenreuther G and Fleissner G 2010 Plos. One 5 e9231
[49] Treiber C D, Salzer M C, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J and Keays D A 2012 Nature 484 367
[50] Timmel C R and Henbest K B 2004 Philos. T. Roy. Soc. A 362 2573
[51] Hoff A J and Hore P J 1984 Chem. Phys. Lett. 108 104
[52] Mohtat N, Cozens F L, Hancock-Chen T, Scaiano J C, McLean J and Kim J 1998 Photochem. Photobiol. 67 111
[53] Wiltschko W and Wiltschko R 1996 J. Exp. Biol. 199 29
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[3] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[4] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[5] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[6] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[7] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[8] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[9] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
[10] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[11] Anomalous magnetoresistance in detwinned EuFe2As2
Zhuang Xu(徐状), Junxiang Pan(潘俊香), Zhen Tao(陶镇), Ruixian Liu(刘瑞鲜), Guotai Tan(谈国太). Chin. Phys. B, 2020, 29(7): 077402.
[12] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[13] Effects of CeO2 and nano-ZrO2 agents on the crystallization behavior and mechanism of CaO-Al2O3-MgO-SiO2-based glass ceramics
Yan Zhang(张艳), Yu Shi(石钰), Xuefeng Zhang(张雪峰), Fengxia Hu(胡凤霞), Jirong Sun(孙继荣), Tongyun Zhao(赵同云), Baogen Shen(沈保根). Chin. Phys. B, 2019, 28(7): 078107.
[14] Orientation and alignment during materials processing under high magnetic fields
Zhong-Ming Ren(任忠鸣), Jiang Wang(王江), Rui-Xin Zhao(赵睿鑫). Chin. Phys. B, 2019, 28(4): 048301.
[15] Orientation dependence of elastic properties in orthorhombic Ca3Mn2O7
Gang Jian(简刚), Mei-Rui Liu(刘美瑞), Chen Zhang(张晨), Jie Lu(卢杰), Chao Yan(晏超). Chin. Phys. B, 2019, 28(2): 026201.
No Suggested Reading articles found!