INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Avian magnetoreception model realized by coupling a magnetite-based mechanism with a radical-pair-based mechanism |
Lü Yan (吕琰)a, Song Tao (宋涛)a b |
a Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; b France-China Bio-Mineralization and Nano-Structures Laboratory (BioMNSL), Beijing 100190, China |
|
|
Abstract Many animal species are verified to use geomagnetic field for their navigation, but the biophysical mechanism of magnetoreception has remained enigmatic. In this paper, we present a special biophysical model that consists of magnetite-based and radical-pair-based mechanisms for avian magnetoreception. The amplitude of the resultant magnetic field around the magnetic particles corresponds to the geomagnetic field direction and affects the yield of singlet/triplet state products in the radical-pair reactions. Therefore, in the proposed model, the singlet/triplet state product yields are related to the geomagnetic field information for orientational detection. The resultant magnetic fields corresponding to two materials with different magnetic properties are analyzed under different geomagnetic field directions. The results show that ferromagnetic particles in organisms can provide more significant changes in singlet state products than superparamagnetic particles, and the period of variation for the singlet state products with an included angle in the geomagnetic field is approximately 180° when the magnetic particles are ferromagnetic materials, consistent with the experimental results obtained from avian magnetic compass. Further, the calculated results of the singlet state products in a reception plane show that the proposed model can explain the avian magnetoreception mechanism with an inclination compass.
|
Received: 08 August 2012
Revised: 15 October 2012
Accepted manuscript online:
|
PACS:
|
87.50.-a
|
(Effects of electromagnetic and acoustic fields on biological systems)
|
|
87.50.dc
|
|
|
02.90.+p
|
(Other topics in mathematical methods in physics)
|
|
Fund: Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 51037006), the State Key Development Program for Basic Research of China (Grant No. 2011CB503702), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51207155). |
Corresponding Authors:
Song Tao
E-mail: songtao@mail.iee.ac.cn
|
Cite this article:
Lü Yan (吕琰), Song Tao (宋涛) Avian magnetoreception model realized by coupling a magnetite-based mechanism with a radical-pair-based mechanism 2013 Chin. Phys. B 22 048701
|
[1] |
Wiltschko W and Merkel F 1966 Verh. dt. Zool. Ges. 59 362
|
[2] |
Johnsen S and Lohmann K J 2005 Nat. Rev. Neurosci. 6 703
|
[3] |
Kirschvink J L, Kobayashikirschvink A, Diazricci J C and Kirschvink S J 1992 Bioelectromagnetics 101
|
[4] |
Cadiou H and McNaughton P A 2010 J. R. Soc. Interface 7 S193
|
[5] |
Shcherbakov V P and Winklhofer M 2010 Phys. Rev. E 81 031921
|
[6] |
Schulten K, Swenberg C E and Weller A 1978 Z. Phys. Chem. Neue. Fol. 111 1
|
[7] |
Ritz T, Adem S and Schulten K 2000 Biophys. J. 78 707
|
[8] |
Solov'yov I A, Mouritsen H and Schulten K 2010 Biophys. J. 99 40
|
[9] |
Blakemore R 1975 Science 190 377
|
[10] |
Walker M M, Diebel C E, Haugh C V, Pankhurst P M, Montgomery J C and Green C R 1997 Nature 390 371
|
[11] |
Eder S H K, Cadiou H, Muhamad A, McNaughton P A, Kirschvink J L and Winklhofer M 2012 PNAS 109 12022
|
[12] |
Zhao J G, Wen G H, Liu C L, Liu C H and Zhan W S 1999 Acta Phys. Sin. 48 973 (in Chinese)
|
[13] |
Kirschvink J L 1997 Nature 390 339
|
[14] |
Kirschvink J L, Walker M M and Diebel C E 2001 Curr. Opin. Neurobiol. 11 462
|
[15] |
Davila A F, Fleissner G, Winklhofer M and Petersen N 2003 Phys. Chem. Earth. 28 647
|
[16] |
Fleissner G, Stahl B, Thalau P, Falkenberg G and Fleissner G 2007 Naturwissenschaften. 94 631
|
[17] |
Solov'yov I A and Greiner W 2007 Biophys. J. 93 1493
|
[18] |
Beason R C and Semm P 1987 Neurosci. Lett. 80 229
|
[19] |
Beason R C and Semm P 1996 J. Exp. Biol. 199 1241
|
[20] |
Leask M J M 1977 Nature 267 144
|
[21] |
Wiltschko R and Wiltschko W 1998 Naturwissenschaften. 85 164
|
[22] |
Wiltschko W, Munro U, Ford H and Wiltschko R 1993 Nature 364 525
|
[23] |
Zapka M, Heyers D, Hein C M, Engels S, Schneider N L, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild J M and Mouritsen H 2009 Nature 461 1274
|
[24] |
Salikhov K M, Molin Y N, Sagdeev R A and Buchachenko A L 1984 Elsevier. 137 51
|
[25] |
Steiner U E and Ulrich T 1989 Chem. Rev. 89 51
|
[26] |
Timmel C R, Till U, Brocklehurst B, McLauchlan K A and Hore P J 1998 Mol. Phys. 95 71
|
[27] |
Meng X G, Wang J S and Liang B L 2010 Chin. Phys. B 19 044202
|
[28] |
Jia B Y, Yu Z Y, Liu Y M, Han L H, Yao W J, Feng H and Ye H 2011 Chin. Phys. B 20 067301
|
[29] |
Timmel C R, Cintolesi F, Brocklehurst B and Hore P J 2001 Chem. Phys. Lett. 334 387
|
[30] |
Rodgers C T and Hore P J 2009 P. Natl. Acad. Sci. USA 106 353
|
[31] |
Ritz T, Ahmad M, Mouritsen H, Wiltschko R and Wiltschko W 2010 J. R. Soc. Interface 7 S135
|
[32] |
Lau J C S, Wagner-Rundell N, Rodgers C T, Green N J B and Hore P J 2010 J. R. Soc. Interface 7 S257
|
[33] |
Groff R P, Suna A, Avakian P and Merrifie R 1974 Phys. Rev. B 9 2655
|
[34] |
Bube W, Michelbeyerle M E, Haberkorn R and Steffens E 1977 Chem. Phys. Lett. 50 389
|
[35] |
Boxer S G, Chidsey C E D and Roelofs M G 1982 P. Natl. Acad. Sci-Biol. 79 4632
|
[36] |
Vandijk B, Vandervos R and Hoff A J 1994 Chem. Phys. Lett. 226 206
|
[37] |
Maeda K, Henbest K B, Cintolesi F, Kuprov I, Rodgers C T, Liddell P A, Gust D, Timmel C R and Hore P J 2008 Nature 453 387
|
[38] |
Niessner C, Denzau S, Gross J C, Peichl L, Bischof H J, Fleissner G, Wiltschko W and Wiltschko R 2011 Plos. One 6 e20091
|
[39] |
Maeda K, Robinson A J, Henbest K B, Hogben H J, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel C R and Hore P J 2012 P. Natl. Acad. Sci. USA 109 4774
|
[40] |
Wiltschko W and Wiltschko R 2005 J. Comp. Physiol. A 191 675
|
[41] |
Binhi V N 2006 Bioelectromagnetics 27 58
|
[42] |
Binhi V N 2008 Int. J. Radiat. Biol. 84 569
|
[43] |
Cohen A E 2009 J. Phys. Chem. A 113 11084
|
[44] |
Yang N and Cohen A E 2010 Opt. Express 18 25461
|
[45] |
Cai J M, Guerreschi G G and Briegel H J 2010 Phys. Rev. Lett. 104 220502
|
[46] |
Mouritsen H and Hore P J 2012 Curr. Opin. Neurobiol. 22 343
|
[47] |
Winklhofer M and Kirschvink J L 2010 J. R. Soc. Interface 7 S273
|
[48] |
Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P, Mouritsen H, Heyers D, Wellenreuther G and Fleissner G 2010 Plos. One 5 e9231
|
[49] |
Treiber C D, Salzer M C, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J and Keays D A 2012 Nature 484 367
|
[50] |
Timmel C R and Henbest K B 2004 Philos. T. Roy. Soc. A 362 2573
|
[51] |
Hoff A J and Hore P J 1984 Chem. Phys. Lett. 108 104
|
[52] |
Mohtat N, Cozens F L, Hancock-Chen T, Scaiano J C, McLean J and Kim J 1998 Photochem. Photobiol. 67 111
|
[53] |
Wiltschko W and Wiltschko R 1996 J. Exp. Biol. 199 29
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|