|
|
Role of elastic scattering in high-order above threshold ionization |
Chen Zhang-Jin (陈长进), Ye Jian-Mian (叶坚绵), Xu Yang-Bing (徐杨兵) |
Department of Physics, College of Science, Shantou University (STU), Shantou 515063, China |
|
|
Abstract We investigate the target and intensity dependence of plateau in high-order above threshold ionization (HATI) by simulating the two-dimensional (2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section (DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra.
|
Received: 07 March 2015
Revised: 21 April 2015
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11274219), the STU Scientific Research Foundation for Talents, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China. |
Corresponding Authors:
Chen Zhang-Jin
E-mail: chenzj@stu.edu.cn
|
Cite this article:
Chen Zhang-Jin (陈长进), Ye Jian-Mian (叶坚绵), Xu Yang-Bing (徐杨兵) Role of elastic scattering in high-order above threshold ionization 2015 Chin. Phys. B 24 103203
|
[1] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[2] |
Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535
|
[3] |
Chen Zhangjin, Morishita T, Le A T and Lin C D 2007 Phys. Rev. A 76 043402
|
[4] |
Morishita T, Le A T, Chen Zhangjin and Lin C D 2008 Phys. Rev. Lett. 100 013903
|
[5] |
Okunishi M, Morishita T, Prümper G, Shimada K, Lin C D, Watanabe S and Ueda K 2008 Phys. Rev. Lett. 100 143001
|
[6] |
Chen Zhangjin, Le A T, Morishita T and Lin C D 2009 Phys. Rev. A 79 033409
|
[7] |
Čerkić A, Hasović E, Milošević D B and Becker W 2009 Phys. Rev. A 79 033413
|
[8] |
Xu Junliang, Zhou H L, Chen Zhangjin and Lin C D 2009 Phys. Rev. A 79 052508
|
[9] |
Xu Junliang, Blaga Cosmin I, DiChiara Anthony D, Sistrunk Emily, Zhang Kaikai, Chen Zhangjin, Le Anh-Thu, Morishita Toru, Lin C D, Agostini Pirre and DiMauro Louis F 2012 Phys. Rev. Lett. 109 233002
|
[10] |
Blaga C I, Xu J, DiChiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F and Lin C D 2012 Nature 483 194
|
[11] |
Chen Z J, Xu J L, Yang W F and Song X H 2013 Phys. Rev. A 88 065402
|
[12] |
Keldysh L V 1965 Sov. Phys. JETP 20 1307
|
[13] |
Faisal F H M 1973 J. Phys. B: At. Mol. Opt. Phys. 6 L89
|
[14] |
Reiss H R 1980 Phys. Rev. A 22 1786
|
[15] |
Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[16] |
Lin C D, Le Anh-Thu, Chen Zhangjin, Morishita Toru and Robert Lucchese 2010 J. Phys. B: At. Mol. Opt. Phys. 43 122001
|
[17] |
Xu Junliang, Liang Yaqiu, Chen Zhangjin and Lin C D 2011 J. Phys.: Conf. Ser. 288 012017
|
[18] |
Zhou XiaoXin, Chen Zhangjin, Morishita Toru, Le Anh-Thu and Lin C D 2008 Phys. Rev. A 77 053410
|
[19] |
Liang Yaqiu 2010 Phys. Rev. A 82 055402
|
[20] |
Chen Zhangjin 2011 J. Phys. B: At. Mol. Opt. Phys. 44 245601
|
[21] |
Chen Zhangjin, Liang Yaqiu and Lin C D 2010 Phys. Rev. A 82 063417
|
[22] |
Chen Zhangjin, Liang Yaqiu, Madison D H and Lin C D 2011 Phys. Rev. A 84 023414
|
[23] |
Ray D, Ulrich B, Bocharova I, Maharjan C, Ranitovic P, Gramkow B, Magrakvelidze M, De S, Litvinyuk I V, Le A T, Morishita T, Lin C D, Paulus G G and Cocke C L 2008 Phys. Rev. Lett. 100 143002
|
[24] |
Tong X M and Lin C D 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2593
|
[25] |
Garvey R H, Jackman C H and Green A E S 1975 Phys. Rev. A 12 1144
|
[26] |
Augst S, Meyerhofer D D, Strickland D and Chin S L 1991 J. Opt. Soc. Am. B 8 858
|
[27] |
Sheehy B, Lafon R, Widmer M, Walker B, DiMauro L F, Agostini P A and Kulande K C 1998 Phys. Rev. A 58 3942
|
[28] |
Paulus G G, Nicklich W, Xu Huale, Lambropoulos P and Walther H 1994 Phys. Rev. Lett. 72 2851
|
[29] |
Paulus G G, Grasbon F, Walther H, Kopold R and Becker W 2001 Phys. Rev. A 64 021401
|
[30] |
Milošević D B, Becker W, Okunishi M, Prümper G, Shimada K and Ueda K 2010 J. Phys. B: At. Mol. Opt. Phys. 43 015401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|