Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010505    DOI: 10.1088/1674-1056/25/1/010505
GENERAL Prev   Next  

Parrondo's paradox for chaos control and anticontrol of fractional-order systems

Marius-F Danca1,2 and Wallace K S Tang3
1. Department of Mathematics and Computer Science, Avram Iancu University, 400380 Cluj-Napoca, Romania;
2. Romanian Institute for Science and Technology, 400487 Cluj-Napoca, Romania;
3. Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
Abstract  

We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The generalization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N≥2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words “winning” and “loosing” in the classical Parrondo's paradox with “order” and “chaos”, respectively, the PS algorithm leads to the generalized Parrondo's paradox: chaos1+chaos2+…+chaosN=order and order1+order2+…+orderN=chaos. Finally, the concept is well demonstrated with the results based on the fractional-order Chen system.

Keywords:  Parrondo'      s paradox      chaos control      parameter switching algorithm      fractional-order Chen system  
Received:  08 March 2015      Revised:  10 September 2015      Accepted manuscript online: 
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Corresponding Authors:  Marius-F Danca     E-mail:  danca@rist.ro

Cite this article: 

Marius-F Danca, Wallace K S Tang Parrondo's paradox for chaos control and anticontrol of fractional-order systems 2016 Chin. Phys. B 25 010505

[1] Harmer G P and Abbott D 1999 Nature 402 864
[2] Harmer G P and Abbott D 1999 Stat. Sci. 14 206
[3] Raghuram I and Rajeev K 2003 Complexity 9 23
[4] Lee Y, Allison A, Abbott D and Stanley H E 2003 Phys. Rev. Lett. 91 220601
[5] Amengual P, Allison A Toral R and Abbott D 2004 Proc. R Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 460 2269
[6] Blackwell D and Girshick M A 1954 Theory of Games and Statistical Decisions (New York: John Wiley & Sons)
[7] Heath D, Kinderlehrer D and Kowalczyk M 2002 Discr. Cont. Dynam. Syst. B 2 153
[8] Harmer G P and Abbott D 2002 Fluct. Noise Lett. 2 R71
[9] Shu J J and Wang Q W 2014 Scientific Reports 4 4244
[10] Danca M F 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 500
[11] Mao Y, Tang W K S and Danca M F 2010 Appl. Math. Comput. 217 355
[12] Danca M F, Aziz-Alaoui M A and Small M 2015 Chin. Phys. B 24 060507
[13] Danca M F, Fečkan M and Romera M 2014 Int. J. Bifurcat. Chaos 24 1450008
[14] Danca M F, Romera M and Pastor G 2009 Int. J. Bifurcat. Chaos 19 2123
[15] Oustaloup A 1995 La Derivation Non Entiere: Theorie, Synthese et Applications (Paris: Hermes)
[16] Podlubny I 1999 Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solutiona nd Some of Their Applications (San Diego: Academic Press)
[17] Nakagava M and Sorimachi K 1992 IEICE Trans. Fundamentals E75-A(12) 1814
[18] Cafagna D and Grassi G 2015 Chin. Phys. B 24 080502
[19] Min F H, Shao S Y, Huang W D and Wang E R 2015 Chin. Phys. Lett. 32 030503
[20] Zhang H, Chen D Y, Zhou K and Wang Y C 2015 Chin. Phys. B 24 030203
[21] Xue W, Xu J K, Cang S J and Jia H Y 2014 Chin. Phys. B 23 060501
[22] Zhoua P and Zhua W 2011 Nonlinear Anal. Real. 12 811
[23] Oldham K B and Spanier J 1974 The Fractional Calculus: Theory and Applications of Differentiation and Integration of Arbitrary Order (New York: Academic Press)
[24] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dynam. 29 3
[25] Charef A, Sun H H, Tsao Y Y and Onaral B 1992 IEEE Trans. Automatic Control 37 1465
[26] Tavazoei M S and Haeri M 2010 Automatica 46 94
[27] Caputo M 1969 Elasticity and Dissipation (Bologna: Zanichelli)
[28] Hartley T T, Lorenzo C F, Trigeassou J C and Maamri N 2013 J. Comput. Nonlin. Dyn. ASME 8 041014
[29] Diethelm K 2013 App. Anal. 93 2126
[30] Diethelm K, Ford N J and Freed A D 2004 Numer. Algorithms 36 31
[31] Danca M F, Romera M, Pastor G and Montoya F 2012 Nonlinear Dynam. 67 2317
[32] Li C and Chen G 2004 Chaos, Solitons Fractal. 22 549
[33] Garrappa R 2011 Predictor-corrector PECE Method for Fractional Differential Equations Matlab Central
[34] Garrappa R 2010 Int. J. Comput. Math. 87 2281
[1] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[2] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[3] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[4] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng (李天增), Wang Yu (王瑜), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2014, 23(8): 080501.
[5] Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity
Yin Jiu-Li (殷久利), Zhao Liu-Wei (赵刘威), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(2): 020204.
[6] Complex dynamical behavior and chaos control for fractional-order Lorenz-like system
Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜). Chin. Phys. B, 2013, 22(4): 040503.
[7] Chaos detection and control in a typical power system
Hossein Gholizadeh, Amir Hassannia, Azita Azarfar. Chin. Phys. B, 2013, 22(1): 010503.
[8] Control of fractional chaotic system based on fractional-order resistor–capacitor filter
Zhang Lu (张路), Deng Ke (邓科), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2012, 21(9): 090505.
[9] Cascade adaptive control of uncertain unified chaotic systems
Wei Wei(魏伟), Li Dong-Hai(李东海), and Wang Jing(王京). Chin. Phys. B, 2011, 20(4): 040510.
[10] Controlling chaos in power system based on finite-time stability theory
Zhao Hui(赵辉), Ma Ya-Jun(马亚军), Liu Si-Jia(刘思佳), Gao Shi-Gen(高士根), and Zhong Dan(钟丹) . Chin. Phys. B, 2011, 20(12): 120501.
[11] No-chattering sliding mode control in a class of fractional-order chaotic systems
Chen Di-Yi(陈帝伊), Liu Yu-Xiao(刘玉晓), Ma Xiao-Yi(马孝义), and Zhang Run-Fan(张润凡) . Chin. Phys. B, 2011, 20(12): 120506.
[12] Adaptive stabilization of an incommensurate fractional order chaotic system via a single state controller
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping (杨世平) . Chin. Phys. B, 2011, 20(11): 110506.
[13] Chaotic behaviours and control of chaos in the p-Ge photoconductor
Feng Yu-Ling(冯玉玲), Zhang Xi-He(张喜和), and Yao Zhi-Hai(姚治海). Chin. Phys. B, 2010, 19(6): 060511.
[14] Fuzzy modeling and impulsive control of hyperchaotic Lü system
Zhang Xiao-Hong(张小洪) and Li Dong(李东). Chin. Phys. B, 2009, 18(5): 1774-1779.
[15] Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory
Wei Du-Qu(韦笃取) and Zhang Bo(张波). Chin. Phys. B, 2009, 18(4): 1399-1403.
No Suggested Reading articles found!