Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040503    DOI: 10.1088/1674-1056/22/4/040503
GENERAL Prev   Next  

Complex dynamical behavior and chaos control for fractional-order Lorenz-like system

Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜)
Department of Mathematics, Xidian University, Xi'an 710071, China
Abstract  In this paper, the complex dynamical behavior for a fractional-order Lorenz-like system with two quadratic terms is investigated. The existence and uniqueness of solutions for this system are proved. The stabilities of equilibrium points are analyzed as one of system parameters changes. The pitchfork bifurcation is discussed for the first time. Then, the necessary conditions for the commensurate and incommensurate fractional-order systems to remain chaos are derived. The largest Lyapunov exponents and phase portraits are given to check the existence of chaos. Finally, the sliding mode control law is provided to make the states of the Lorenz-like system asymptotically stable. Numerical simulation results show that the presented approach can effectively guide the chaotic trajectories to the unstable equilibrium points.
Keywords:  fractional-order Lorenz-like system      stability analysis      pitchfork bifurcation      chaos control  
Received:  16 August 2012      Revised:  06 October 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Projected supported by the National Natural Science Foundation of China (Grant No. 11202155) and the Fundamental Research Funds for the Central Universities, China (Grant No. K50511700001).
Corresponding Authors:  Li Rui-Hong     E-mail:  llylrh8077@126.com

Cite this article: 

Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜) Complex dynamical behavior and chaos control for fractional-order Lorenz-like system 2013 Chin. Phys. B 22 040503

[1] Oldham K B and Spanier J 1974 The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order (New York: Academic Press)
[2] Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: John Wiley and Sons)
[3] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[4] Sheu L J, Chen H K, Chen J H, Tam L M, Chen W C, Lin K T and Kang Y 2008 Chaos, Solitons and Fractals 36 98
[5] Engheta N 1996 IEEE Trans. Antennas. Propag. 44 554
[6] Bagley R L and Calico R A 1991 J. Guid. Control Dyn. 14 304
[7] Ahmad W M and Ei-Khazali R 2007 Chaos, Solitons and Fractals 33 1367
[8] El-Sayed A M A 1996 Int. J. Theor. Phys. 35 311
[9] Lazopoulos K A 2006 Mech Res. Commun. 33 753
[10] Laskin N 2000 Physica A 287 482
[11] Chen J H and Chen W C 2008 Chaos, Solitons and Fractals 35 188
[12] Shao S Q, Gao X and Liu X W 2007 Chin. Phys. 16 2612
[13] Zhou P, Wei L J and Cheng X F 2009 Chin. Phys. B 18 2674
[14] Xu Z, Liu C X and Yang T 2010 Acta Phys. Sin. 59 1524 (in Chinese)
[15] Zhang R X, Yang S P and Liu Y L 2010 Acta Phys. Sin. 59 1549 (in Chinese)
[16] Yan X M and Liu D 2010 Acta Phys. Sin. 59 3043 (in Chinese)
[17] Yang J and Qi D L 2010 Chin. Phys. B 19 020508
[18] Niu Y J, Wang X Y, Nian F Z and Wang M J 2010 Chin. Phys. B 19 120507
[19] Schuster H G 1984 Deterministic Chaos: An Introduction (Weinheim: Physik-Verlag)
[20] Liu C X, Liu L, Liu T and Li P 2006 Chaos, Solitons and Fractals 28 1196
[21] Deng W H 2010 Nonlinear Analysis: Theory, Methods and Applications 72 1768
[22] Deng W H, Li C P and Guo Q 2007 Fractals 15 173
[23] Diethelm K and Ford N J 2002 J. Math. Anal. Appl. 265 229
[24] Diethelm K and Freed A D 1999 On the Solution of Nonlinear Fractional-order Differential Equations Used in the Modeling of Viscoplasticity (Heidelberg: Springer-Verlag)
[25] Diethelm K, Ford N J and Freed A D 2009 Nonlinear Dyn. 29 3
[26] El-Mesiry A E M, El-Sayed A M A and El-Saka H A A 2005 Appl. Math. Comput. 160 683
[27] Deng W H 2007 J. Comput. Phys. 227 1510
[28] Qian D L 2010 "Stability Analysis and Normal Form Computation of Fractional Differential Equations" (Ph. D. Dissertation) (Shanghai: Shanghai University)
[29] Rosenstein M T, Collins J J and De Luca C J 1993 Physcia D 65 117
[30] Park J H 2005 Chaos, Solitons and Fractals 23 1049
[31] Lee T H and Park J H 2009 Chin. Phys. Lett. 26 090507
[32] Lee S M, Kwon O M and Park J H 2011 Chin. Phys. B 20 010506
[33] Ji D H, Koo J H, Won S C and Park J H 2011 Chin. Phys. B 20 070502
[34] Dadras S and Momeni H R 2010 Physica A 389 2434
[35] Qi D L, Yang J and Zhang J L 2010 Chin. Phys. B 10 100506
[36] Chen D Y, Liu Y X, Ma X Y and Zhang R F 2012 Nonlinear Dyn. 67 893
[1] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[2] Theoretical study of novel B-C-O compoundswith non-diamond isoelectronic
Chao Liu(刘超) and Pan Ying(应盼). Chin. Phys. B, 2022, 31(2): 026201.
[3] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
[4] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[5] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[6] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[7] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[8] Robust stability characterizations of active metamaterials with non-Foster loads
Yi-Feng Fan(范逸风), Yong-Zhi Sun(孙永志). Chin. Phys. B, 2018, 27(2): 028102.
[9] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[10] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[11] Three-dimensional MHD flow over a shrinking sheet: Analytical solution and stability analysis
Sumaira Afzal, Saleem Asghar, Adeel Ahmad. Chin. Phys. B, 2017, 26(1): 014704.
[12] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[13] Stability analysis for flow past a cylinder via lattice Boltzmann method and dynamic mode decomposition
Zhang Wei (张伟), Wang Yong (王勇), Qian Yue-Hong (钱跃竑). Chin. Phys. B, 2015, 24(6): 064701.
[14] Augmented Lyapunov approach to H state estimation of static neural networks with discrete and distributed time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(5): 050201.
[15] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng (李天增), Wang Yu (王瑜), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2014, 23(8): 080501.
No Suggested Reading articles found!