Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090505    DOI: 10.1088/1674-1056/21/9/090505
GENERAL Prev   Next  

Control of fractional chaotic system based on fractional-order resistor–capacitor filter

Zhang Lu (张路), Deng Ke (邓科), Luo Mao-Kang (罗懋康)
College of Mathematics, Sichuan University, Chengdu 610065, China
Abstract  We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional-order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method.
Keywords:  fractional chaotic system      chaos control      fractional-order controller      resistor-capacitor filter  
Received:  01 December 2011      Revised:  20 February 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11171238) and the Ministry of Education Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRTO0742).
Corresponding Authors:  Luo Mao-Kang     E-mail:  makaluo@scu.edu.cn

Cite this article: 

Zhang Lu (张路), Deng Ke (邓科), Luo Mao-Kang (罗懋康) Control of fractional chaotic system based on fractional-order resistor–capacitor filter 2012 Chin. Phys. B 21 090505

[1] Podlubny I 1999 Fractional Differential Equations (New York: Academic)
[2] Ivo P 2011 Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation (Beijing: Higher Education Press) p. 138
[3] Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 034101
[4] Li C P and Peng G J 2004 Chaos Soliton. Fract. 22 443
[5] Li C G and Chen G R 2004 Chaos Soliton. Fract. 22 549
[6] Chen J H and Chen W C 2008Chaos Soliton. Fract. 35 188
[7] Ge Z M and Jhuang W R 2007 Chaos Soliton. Fract. 33 270
[8] Zhong Q S 2008 Chin. Phys. Lett. 25 2812
[9] Huang L L and He S J 2011 Acta Phys. Sin. 60 044703 (in Chinese)
[10] Gao X and Yu J B 2005 Chin. Phys. 14 090806
[11] Sara D and Hamid R M 2010 Physical A 389 2434
[12] Xu Z, Liu C X and Yang T 2010 Acta Phys. Sin. 59 1524 (in Chinese)
[13] Lurie B J (U.S. Patent) 5 371 670 [1994-12-06]
[14] Podlubny I 1999 IEEE Trans. Automat. Control 44 208
[15] Oustaloup A, Sabatier J and Lanusse P 1999 Fractional Calculus Appl. Anal. 2 1
[1] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[2] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[3] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[4] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[5] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng (李天增), Wang Yu (王瑜), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2014, 23(8): 080501.
[6] Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity
Yin Jiu-Li (殷久利), Zhao Liu-Wei (赵刘威), Tian Li-Xin (田立新). Chin. Phys. B, 2014, 23(2): 020204.
[7] Complex dynamical behavior and chaos control for fractional-order Lorenz-like system
Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜). Chin. Phys. B, 2013, 22(4): 040503.
[8] Chaos detection and control in a typical power system
Hossein Gholizadeh, Amir Hassannia, Azita Azarfar. Chin. Phys. B, 2013, 22(1): 010503.
[9] Cascade adaptive control of uncertain unified chaotic systems
Wei Wei(魏伟), Li Dong-Hai(李东海), and Wang Jing(王京). Chin. Phys. B, 2011, 20(4): 040510.
[10] Controlling chaos in power system based on finite-time stability theory
Zhao Hui(赵辉), Ma Ya-Jun(马亚军), Liu Si-Jia(刘思佳), Gao Shi-Gen(高士根), and Zhong Dan(钟丹) . Chin. Phys. B, 2011, 20(12): 120501.
[11] No-chattering sliding mode control in a class of fractional-order chaotic systems
Chen Di-Yi(陈帝伊), Liu Yu-Xiao(刘玉晓), Ma Xiao-Yi(马孝义), and Zhang Run-Fan(张润凡) . Chin. Phys. B, 2011, 20(12): 120506.
[12] Adaptive stabilization of an incommensurate fractional order chaotic system via a single state controller
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping (杨世平) . Chin. Phys. B, 2011, 20(11): 110506.
[13] Chaotic behaviours and control of chaos in the p-Ge photoconductor
Feng Yu-Ling(冯玉玲), Zhang Xi-He(张喜和), and Yao Zhi-Hai(姚治海). Chin. Phys. B, 2010, 19(6): 060511.
[14] Fuzzy modeling and impulsive control of hyperchaotic Lü system
Zhang Xiao-Hong(张小洪) and Li Dong(李东). Chin. Phys. B, 2009, 18(5): 1774-1779.
[15] Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory
Wei Du-Qu(韦笃取) and Zhang Bo(张波). Chin. Phys. B, 2009, 18(4): 1399-1403.
No Suggested Reading articles found!