Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010504    DOI: 10.1088/1674-1056/22/1/010504
GENERAL Prev   Next  

A new image encryption algorithm based on fractional-order hyperchaotic Lorenz system

Wang Zhen (王震)a, Huang Xia (黄霞)b, Li Yu-Xia (李玉霞)b, Song Xiao-Na (宋晓娜)c
a College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
b Key Laboratory of Robotics and Intelligent Technology, College of Information and Electrical Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
c College of Electronic and Information Engineering, Henan University of Science and Technology, Luoyang 471003, China
Abstract  We propose a new image encryption algorithm on a basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.
Keywords:  image encryption      fractional order      hyperchaotic Lorenz system  
Received:  22 April 2012      Revised:  03 August 2012      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Vx (Communication using chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61004078 and 60971022), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2009GQ009 and ZR2009GM005), the China Postdoctoral Science Foundation (Grant No. 20100481293), and the Special Funds for Postdoctoral Innovative Projects of Shandong Province, China (Grant No. 201003037).
Corresponding Authors:  Huang Xia     E-mail:  huangxia.qd@gmail.com

Cite this article: 

Wang Zhen (王震), Huang Xia (黄霞), Li Yu-Xia (李玉霞), Song Xiao-Na (宋晓娜) A new image encryption algorithm based on fractional-order hyperchaotic Lorenz system 2013 Chin. Phys. B 22 010504

[1] Yu W W and Cao J D 2006 Phys. Lett. A 356 333
[2] Wang K, Pei W J, Zhou J T, Zhang Y F and Zhou S Y 2011 Acta Phys. Sin. 60 070503 (in Chinese)
[3] Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506
[4] Tang Y, Wang Z D and Fang J A 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 2456
[5] Tong X J and Cui M G 2009 Signal Processing 89 480
[6] Kocarev L and Jakimoski G 2001 Phys. Lett. A 289 199
[7] Yang T, Wu C W and Chua L O 1997 IEEE Trans. Circuits Syst. I 44 469
[8] Wang X Y and Zhao J F 2010 Neurocomputing 73 3224
[9] Kiani-B A, Fallahi K, Pariz N and Leung H 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 863
[10] Schneier B 1996 Applied Cryptography (New York: John Wiley & Sons)
[11] Chang C C, Hwang M S and Chen T S 2001 Journal of System and Software 58 83
[12] Shannon C E 1949 Bell System Technical Journal 28 656
[13] Fridrich J 1998 Int. J. Bifurcat. Chaos 8 1259
[14] Podlubny I 1999 Fractional Differential Equations (New York: Academic)
[15] Heaviside O 1971 Electromagnetic Theory (New York: Chelsea)
[16] Sun H G, Chen W and Chen Y Q 2009 Physica A 388 4586
[17] Sun H G, Chen W, Li C P and Chen Y Q 2010 Physica A 389 2719
[18] Zhang R X and Yang S P 2009 Acta Phys. Sin. 58 2957 (in Chinese)
[19] Zhang R X and Yang S P 2009 Chin. Phys. B 18 3295
[20] Chen Y Q, Ahn H S and Xue D Y 2006 Signal Processing 86 2794
[21] Liu Y and Xie Y 2010 Acta Phys. Sin. 59 2147 (in Chinese)
[22] Yu Y G, Li H X, Wang S and Yu J Z 2009 Chaos Soliton. Fract. 42 1181
[23] Li C P and Chen G R 2004 Physica A 341 55
[24] Lu J G 2005 Chaos Soliton. Fract. 26 1125
[25] Podlubny I 2002 J. Fract. Calc. 5 367
[26] Wang S H, Kuang J Y, Li J H, Luo Y L, Lu H P and Hu G 2002 Phys. Rev. E 66 065202
[27] Gao T G and Chen Z Q 2008 Phys. Lett. A 372 394
[28] Rhouma R and Belghith S 2008 Phys. Lett. A 372 5790
[29] Deng W H 2007 J. Comput. Appl. Math. 206 174
[30] Dadras S and Momeni H R 2010 Physica A 389 2434
[31] Tavazoei M S and Haeri M Physica A 387 57
[32] Behnia S, Akhshani A, Akhavan A and Mahmpdi H 2009 Chaos Soliton. Fract. 40 505
[33] Zhang X F and Fan J L 2010 Comput. Sci. 2 264 (in Chinese)
[1] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[2] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[3] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[4] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[5] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[6] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[7] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[8] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[9] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[10] An image encryption algorithm based on improved baker transformation and chaotic S-box
Xing-Yuan Wang(王兴元), Huai-Huai Sun(孙怀怀), and Hao Gao(高浩). Chin. Phys. B, 2021, 30(6): 060507.
[11] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[12] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[13] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[14] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[15] A secure image protection algorithm by steganography and encryption using the 2D-TSCC
Qi Li(李琦), Xingyuan Wang(王兴元), He Wang(王赫), Xiaolin Ye(叶晓林), Shuang Zhou(周双), Suo Gao(高锁), and Yunqing Shi(施云庆). Chin. Phys. B, 2021, 30(11): 110501.
No Suggested Reading articles found!