Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020204    DOI: 10.1088/1674-1056/23/2/020204
GENERAL Prev   Next  

Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity

Yin Jiu-Li (殷久利), Zhao Liu-Wei (赵刘威), Tian Li-Xin (田立新)
Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013, China
Abstract  The nonlinear Schrödinger equation with Kerr law nonlinearity in the two-frequency interference is studied by the numerical method. Chaos occurs easily due to the absence of damping. This phenomenon will cause the distortion in the process of information transmission. We find that fiber-optic transmit signals still present chaotic phenomena if the control intensity is smaller. With the increase of intensity, the fiber-optic signal can stay in a stable state in some regions. When the strength is suppressed to a certain value, an unstable phenomenon of the fiber-optic signal occurs. Moreover we discuss the sensitivities of the parameters to be controlled. The results show that the linear term coefficient and the environment of two quite different frequences have less effects on the fiber-optic transmission. Meanwhile the phenomena of vibration, attenuation and escape occur in some regions.
Keywords:  chaos control      fiber-optic signal      nonlinear Schrödinger equation  
Received:  24 April 2013      Revised:  19 July 2013      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11101191).
Corresponding Authors:  Yin Jiu-Li     E-mail:  yjlujs@yahoo.com.cn
About author:  02.30.Jr; 02.60.Lj

Cite this article: 

Yin Jiu-Li (殷久利), Zhao Liu-Wei (赵刘威), Tian Li-Xin (田立新) Chaos control in the nonlinear Schrödinger equation with Kerr law nonlinearity 2014 Chin. Phys. B 23 020204

[1] Zhang Z Y, Liu Z H, Miao X Z and Chen Y Z 2010 Appl. Math. Comput. 216 3064
[2] Moosaei H, Mirzazadeh M and Yildirim A 2011 Nonlinear Analysis 16 332
[3] Masemola P, Kara A H and Anjan Biswas 2013 Optics & Laser Technology 45 402
[4] Özgüla S, Turana M and Yildirima A 2012 Optik 123 2250
[5] Shehata A R 2010 Appl. Math. Comput. 217 1
[6] Wu R Q, Deng J and Jin Z J 2006 Chaos, Solitions & Fractals 27 249
[7] Taghizadeh N and Mirzazadeh M 2012 Commun. Nonlinear Sci. Numer. Simul. 17 1493
[8] Miao X J and Zhang Z Y 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4259
[9] Ma W X and Chen M 2009 Appl. Math. Comput. 215 2835
[10] Beitia J B and Calvo G F 2009 Phys. Lett. A 373 448
[11] Zhang Z Y 2008 Turk. J. Phys. 32 235
[12] Dai C Q and Chen J L 2012 Chin. Phys. B 21 080507
[13] Luo B, Hang C, Li H J and Huang G X 2010 Chin. Phys. B 19 054214
[14] Peng J Z, Yang H and Tang Y 2009 Chin. Phys. B 18 2364
[15] Li H M, Li Y S and Lin J 2009 Chin. Phys. B 18 3657
[16] Zhang Z Y, Zhang Y H, Gan X Y and Yu D M 2012 Zeitschrift fur Naturforschung A 67 167
[17] Zhang Z Y, Li Y X, Liu Z H and Miao X J 2011 Commun. Nonlinear Sci. Numer. Simul. 16 3097
[18] Zhang Z Y, Liu Z H, Miao X J and Chen Y Z 2011 Phys. Lett. A 375 1275
[19] Zhang Z Y, Gan X Y and Yu D M 2011 Zeitschrif fur Naturforschung A 66 721
[20] Zhang Z Y, Gan X Y, Yu D M, Zhang Y H and Li X P 2012 Commun. Theor. Phys. 57 764
[21] Taghizadeh N, Mirzazadeh M and Mahmoodirad A 2013 Indian J. Phys. 87 781
[22] Mahmoud G M, Mohamed A A and Aly S A 2001 Physica A 292 193
[23] Lazzouni S A, Bowong S, Moukan F M and Cherki B 2007 Commun. Nonlinear Sci. Numer. Simul. 12 804
[24] Jin Z J and Wu R Q 2005 Chaos, Solitions & Fractals 23 399
[25] Jin Z J, Huang J C and Deng J 2007 Chaos, Solitions & Fractals 33 795
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[3] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[4] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[5] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[6] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[7] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[8] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[9] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
Marius-F Danca, Wallace K S Tang. Chin. Phys. B, 2016, 25(1): 010505.
[10] Control of fractional chaotic and hyperchaotic systems based on a fractional order controller
Li Tian-Zeng (李天增), Wang Yu (王瑜), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2014, 23(8): 080501.
[11] Complex dynamical behavior and chaos control for fractional-order Lorenz-like system
Li Rui-Hong (李瑞红), Chen Wei-Sheng (陈为胜). Chin. Phys. B, 2013, 22(4): 040503.
[12] Chaos detection and control in a typical power system
Hossein Gholizadeh, Amir Hassannia, Azita Azarfar. Chin. Phys. B, 2013, 22(1): 010503.
[13] Control of fractional chaotic system based on fractional-order resistor–capacitor filter
Zhang Lu (张路), Deng Ke (邓科), Luo Mao-Kang (罗懋康). Chin. Phys. B, 2012, 21(9): 090505.
[14] Cascade adaptive control of uncertain unified chaotic systems
Wei Wei(魏伟), Li Dong-Hai(李东海), and Wang Jing(王京). Chin. Phys. B, 2011, 20(4): 040510.
[15] Controlling chaos in power system based on finite-time stability theory
Zhao Hui(赵辉), Ma Ya-Jun(马亚军), Liu Si-Jia(刘思佳), Gao Shi-Gen(高士根), and Zhong Dan(钟丹) . Chin. Phys. B, 2011, 20(12): 120501.
No Suggested Reading articles found!