Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 020302    DOI: 10.1088/1674-1056/24/2/020302
GENERAL Prev   Next  

Unified treatment of the bound states of the Schiöberg and the Eckart potentials using Feynman path integral approach

A. Diaf
Laboratoire de l'Énergie et des Systèmes Intelligents, Université de Khemis Miliana, Route de Thénia, Khemis Miliana, 44225, Algérie
Abstract  We obtain analytical expressions for the energy eigenvalues of both the Schiöberg and Eckart potentials using an approximation of the centrifugal term. In order to determine the l-states solutions, we use the Feynman path integral approach to quantum mechanics. We show that by performing nonlinear space-time transformations in the radial path integral, we can derive a transformation formula that relates the original path integral to the Green function of a new quantum solvable system. The explicit expression of bound state energy is obtained and the associated eigenfunctions are given in terms of hypergeometric functions. We show that the Eckart potential can be derived from the Schiöberg potential. The obtained results are compared to those produced by other methods and are found to be consistent.
Keywords:  path integrals      l-states      Schiöberg potential      Eckart potential  
Received:  09 June 2014      Revised:  10 September 2014      Accepted manuscript online: 
PACS:  03.65.Ca (Formalism)  
  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: Project supported by CNEPRU (Grant No. D03920130021).
Corresponding Authors:  A. Diaf     E-mail:  s_ahmed_diaf@yahoo.fr

Cite this article: 

A. Diaf Unified treatment of the bound states of the Schiöberg and the Eckart potentials using Feynman path integral approach 2015 Chin. Phys. B 24 020302

[1] Guo J Y, Zhou F and Guo F L 2007 Int. J. Mod. Phys. A 22 4825
[2] Zhou Y and Guo J Y 2008 Chin. Phys. B 17 380
[3] Guo J Y, Yu Y and Shaowei W J 2009 Cent. Eur. J. Phys. 7 168
[4] Guo J Y 2012 Phys. Rev. C 85 021302
[5] Lucha W and Schöberl F F 1999 Int. J. Mod. Phys. C 10 607
[6] Pekeris C L 1934 Phys. Rev. 45 98
[7] Berkdemir C 2006 Nucl. Phys. A 770 32
[8] Qiang W C and Dong S H 2007 Phys. Lett. A 363 169
[9] Berkdemir C and Han J 2005 Chem. Phys. Lett. 409 203
[10] Berkdemir C, Berkdemir A and Han J 2006 Chem. Phys. Lett. 417 326
[11] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[12] Ikhdair S M 2011 Phys. Scr. 83 015010
[13] Flügge S 1974 Practical Quantum Mechanics (Berlin: Springer)
[14] Hulthén L 1942 Ark. Mat. Astron. Fys. A 28 5
[15] Manning M F and Rosen N 1933 Phys. Rev. 44 953
[16] Wei G F, Long C Y and Dong S H 2008 Phys. Lett. A 372 2592
[17] Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 39 6955
[18] Gönül B, Özer O and Cançelik Y and Koçak M 2000 Phys. Lett. A 275 238
[19] Schiöberg D 1986 Mol. Phys. 59 1123
[20] Wang P Q, Zhang L H, Jia C S and Liu J Y 2012 J. Mol. Spectrosc. 274 5
[21] Jia C S, Diao Y F, Liu X J, Wang P Q, Liu J Y and Zhang G D 2012 J. Chem. Phys. 137 014101
[22] Wang P Q, Liu J Y, Zhang L H, Cao S Y and Jia C S 2012 J. Mol. Spectrosc. 278 23
[23] Lu J, Qian H X, Li L M and Liu F L 2005 Chin. Phys. 14 2402
[24] Diaf A and Chouchaoui A 2011 Phys. Scr. 84 015004
[25] Diaf A and Hachama A 2013 Can. J. Phys. 91 1081
[26] Ikhdair S M and Sever R 2009 Ann. Phys. 18 189
[27] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[28] Weiss J J 1964 J. Chem. Phys. 41 1120
[29] Cimas A, Aschi M, Barrientos C, Rayon V M, Sordo J A and Largo A 2003 Chem. Phys. Lett. 374 594
[30] Ikhdair S M and Sever R 2008 Ann. Phys. 17 897
[31] Qiang W C and Dong S H 2007 Phys. Lett. A 368 13
[32] Qiang W C, Kai L and Wen Chen L 2009 J. Phys. A: Math. Theor. 42 205306
[33] Jia C S, Chenb T and Cui L G 2009 Phys. Lett. A 373 1621
[34] Jia C S, Diao Y F, Yi L Z and Chen T 2009 Int. J. Mod. Phys. A 24 4519
[35] Chen Z Y, Li M and Jia C S 2009 Mod. Phys. Lett. A 24 1863
[36] Diao Y F, Yi L Z, Chen T and Jia C S 2009 Mod. Phys. Lett. B 23 2269
[37] Khandekar D C, Lawande S V and Bhagwat K V 1986 Path Integral Methods and Their Applications (Singapore: World Scientific)
[38] Duru I H and Kleinert H 1979 Phys. Lett. B 84 185
[39] Groshe C and Steiner F 1998 Handbook of Feynman Path Integrals (Berlin: Springer)
[40] Junker G and Böhm M 1986 Phys. Lett. A 117 375
[41] Inomata A, Kuratsuji H and Gerry C C 1992 Path Integrals and Coherent States SU(2) and SU(1,1) (Singapore: World Scientific)
[42] Kleinert H and Mustapic I 1992 J. Math. Phys. 33 643
[43] Groshe C 1989 J. Phys. A. Math. Gen. 22 5073
[44] Frank A and Wolf K 1985 J. Math. Phys. 26 973
[45] Dong S H, Qiang W C, Sun G H and Bezerra V B 2007 J. Phys. A: Math. Theor. 40 10535
[46] Zhang A P, Qiang W C and Ling Y W 2009 Chin. Phys. Lett. 26 100302
[47] Stanek J 2011 Cent. Eur. J. Phys. 9 1503
[1] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[2] Relativistic symmetries of Deng–Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions
Akpan N. Ikot, S. Zarrinkamar, B. H. Yazarloo, H. Hassanabadi. Chin. Phys. B, 2014, 23(10): 100306.
[3] Bound states of the Dirac equation with position-dependent mass for the Eckart potential
Bahar M. K., Yasuk F.. Chin. Phys. B, 2013, 22(1): 010301.
[4] Exact propagator for an electron in a quadratic saddle-point potential and a magnetic field
Yang Tao(杨涛), Zhai Zhi-Yuan(翟智远), and Pan Xiao-Yin(潘孝胤) . Chin. Phys. B, 2011, 20(4): 040304.
[5] Approximate solutions of Schrödinger equation for Eckart potential with centrifugal term
F. Tacskin and G. Koccak. Chin. Phys. B, 2010, 19(9): 090314.
No Suggested Reading articles found!