Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120507    DOI: 10.1088/1674-1056/21/12/120507
GENERAL Prev   Next  

Synchronization between a novel class of fractional-order and integer-order chaotic systems via sliding mode controller

Chen Di-Yi (陈帝伊), Zhang Run-Fan (张润凡), Ma Xiao-Yi (马孝义), Wang Juan (王娟)
Department of Electrical Engineering, College of Water Resources and Architectural Engineering, Northwest Agriculture & Forestry University, Yangling 712100, China
Abstract  In order to figure out the dynamical behaviours of fractional-order chaotic system and its relation to integer-order chaotic system, in this paper we investigate the synchronization between a class of fractional-order chaotic systems and integer-order chaotic systems via sliding mode control method. Stability analysis is performed for the proposed method based on stability theorems in the fractional calculus. Moreover, three typical examples are carried out to show that the synchronization between fractional-order chaotic systems and integer-orders chaotic systems can be achieved. Our theoretical findings are supported by numerical simulation results. Finally, results from numerical computations and theoretical analysis are demonstrated to be a perfect bridge between fractional-order chaotic systems and integer-order chaotic systems.
Keywords:  synchronization      fractional-order system      integer-order chaotic system      sliding mode  
Received:  25 February 2012      Revised:  11 June 2012      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Uu (Integral transforms)  
  02.60.Cb (Numerical simulation; solution of equations)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51109180).
Corresponding Authors:  Ma Xiao-Yi     E-mail:  ieee307@163.com

Cite this article: 

Chen Di-Yi (陈帝伊), Zhang Run-Fan (张润凡), Ma Xiao-Yi (马孝义), Wang Juan (王娟) Synchronization between a novel class of fractional-order and integer-order chaotic systems via sliding mode controller 2012 Chin. Phys. B 21 120507

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Wang X Y, Zhang Y L, Lin D and Zhang N 2011 Chin. Phys. B 20 030506
[3] Liu F C, Li J Y and Zang X F 2011 Acta Phys. Sin. 60 030504 (in Chinese)
[4] Niu Y J, Wang X Y and Pei B N 2012 Chin. Phys. B 21 030503
[5] Ma T D and Fu J 2011 Chin. Phys. B 20 050511
[6] Li T, Yu J J and Wang Z 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1796
[7] Zhang R X and Yang S P 2011 Chin. Phys. B 20 090512
[8] Chen D Y, Liu Y X, Ma X Y and Zhang R F 2012 Nonlinear Dyn. 67 893
[9] Xu Y H, Zhou W N and Fang J A 2011 Chin. Phys. B 20 090509
[10] Jiang N, Pan W and Luo B 2010 Phys. Rev. E 81 066217
[11] Chen D Y, Zhang R F, Sprott J C and Ma X Y 2012 Chaos 22 023130
[12] Chen D Y, Liu Y X and Ma X Y 2011 Chin. Phys. B 20 120506
[13] Matignon D 1996 IEEE-SMC Proceedings 2 963
[14] Tavazoei M S and Haeri M 2008 Physica D 237 2628
[15] Asheghan M M, Beheshti M T H and Tavazoei M S 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1044
[16] Bhalekar S and Daftardar-Gejji V 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2178
[17] Lü J and Chen G 2002 Int. J. Bifur. Chaos 12 59
[18] Lu J G 2006 Phys. Lett. A 354 305
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[14] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[15] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
No Suggested Reading articles found!