Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110505    DOI: 10.1088/1674-1056/21/11/110505
GENERAL Prev   Next  

Chaos suppression of uncertain gyros in a given finite time

Mohammad Pourmahmood Aghababaa, Hasan Pourmahmood Aghababab c
a Electrical Engineering Department, Urmia University of Technology, Urmia, Iran;
b Department of Mathematics, University of Tabriz, Tabriz, Iran;
c Research Center for Industrial Mathematics of University of Tabriz, Tabriz, Iran
Abstract  The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the chaotic gyros in a given finite time. Considering the effects of model uncertainties, external disturbances, and fully unknown parameters, we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible. Using the finite-time control technique, we given the exact value of the chaos suppression time. A mathematical theorem is presented to prove the finite-time stability of the proposed scheme. The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy.
Keywords:  chaos suppression      chaotic gyro      finite-time stability      robustness  
Received:  24 April 2012      Revised:  14 June 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Corresponding Authors:  Mohammad Pourmahmood Aghababa     E-mail:  m.p.aghababa@ee.uut.ac.ir

Cite this article: 

Mohammad Pourmahmood Aghababa, Hasan Pourmahmood Aghababa Chaos suppression of uncertain gyros in a given finite time 2012 Chin. Phys. B 21 110505

[1] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 65 3215
[2] Aghababa M P 2011 Nonlinear Dyn. 69 247
[3] Lü L, Li G, Guo L, Meng L, Zou J R and Yang M 2010 Chin. Phys. B 19 080507
[4] Liu Y Z, Jiang C S, Lin C S and Jiang Y M 2007 Chin. Phys. B 16 660
[5] Aghababa M P 2011 Chin. Phys. B 20 090505
[6] Hu J and Zhang Q J 2008 Chin. Phys. B 17 503
[7] Aghababa M P 2012 Chin. Phys. B 21 030502
[8] Bowong S 2007 Nonlinear Dyn. 49 59
[9] Chen H K 2002 J. Sound Vibr. 255 719
[10] Dooren R V 2008 J. Sound Vibr. 268 632
[11] Tong X and Mrad N 2001 J. Appl. Mech. 68 681
[12] Leipnik R B and NewtoT A 1981 Phys. Lett. A 86 63
[13] Polo M F P and Molina M P 2007 Nonlinear Dyn. 48 129
[14] Lei Y, Xu W and Zheng H 2005 Phys. Lett. A 343 153
[15] Hung M, Yan J and Liao T 2008 Chaos Soliton. Fract. 35 181
[16] Yau H 2007 Chaos Soliton. Fract. 34 1357
[17] Yau H 2008 Mech. Syst. Signal Process. 22 408
[18] Yan J, Hung M, Lin J and Liao T 2007 Mech. Syst. Signal Process. 21 2515
[19] Wang H, Han Z, Xie Q and Zhang W 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 2728
[20] Edwards C, Spurgeon S K and Patton R J 2000 Automatica 36 541
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[3] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[4] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[5] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[6] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[7] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
[8] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[9] The robustness of sparse network under limited attack capacity
Xiao-Juan Wang(王小娟), Mei Song(宋梅), Lei Jin(金磊), Zhen Wang(王珍). Chin. Phys. B, 2017, 26(8): 088901.
[10] Degree distribution and robustness of cooperativecommunication network with scale-free model
Wang Jian-Rong (王建荣), Wang Jian-Ping (王建萍), He Zhen (何振), Xu Hai-Tao (许海涛). Chin. Phys. B, 2015, 24(6): 060101.
[11] Effects of systematic phase errors on optimized quantum random-walk search algorithm
Zhang Yu-Chao (张宇超), Bao Wan-Su (鲍皖苏), Wang Xiang (汪翔), Fu Xiang-Qun (付向群). Chin. Phys. B, 2015, 24(6): 060304.
[12] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰). Chin. Phys. B, 2015, 24(3): 034208.
[13] An effective method to improve the robustness of small-world networks under attack
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(8): 088902.
[14] An encryption scheme based on phase-shifting digital holography and amplitude-phase disturbance
Hua Li-Li (花丽丽), Xu Ning (徐宁), Yang Geng (杨庚). Chin. Phys. B, 2014, 23(6): 064201.
[15] Optimization of robustness of network controllability against malicious attacks
Xiao Yan-Dong (肖延东), Lao Song-Yang (老松杨), Hou Lv-Lin (侯绿林), Bai Liang (白亮). Chin. Phys. B, 2014, 23(11): 118902.
No Suggested Reading articles found!