Chaos suppression of uncertain gyros in a given finite time
Mohammad Pourmahmood Aghababaa, Hasan Pourmahmood Aghababab c
a Electrical Engineering Department, Urmia University of Technology, Urmia, Iran; b Department of Mathematics, University of Tabriz, Tabriz, Iran; c Research Center for Industrial Mathematics of University of Tabriz, Tabriz, Iran
Abstract The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the chaotic gyros in a given finite time. Considering the effects of model uncertainties, external disturbances, and fully unknown parameters, we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible. Using the finite-time control technique, we given the exact value of the chaos suppression time. A mathematical theorem is presented to prove the finite-time stability of the proposed scheme. The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.