Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110506    DOI: 10.1088/1674-1056/21/11/110506
GENERAL Prev   Next  

Cluster projective synchronization of complex networks with nonidentical dynamical nodes

Yao Hong-Xing (姚洪兴)a b, Wang Shu-Guo (王树国 )b c
a School of Finance & Economics, Jiangsu University, Zhenjiang 212013, China;
b Faculty of Science, Jiangsu University, Zhenjiang 212013, China;
c Department of Mathematics and Physics, Changzhou Campus Hohai University, Changzhou 213022, China
Abstract  We investigate a new cluster projective synchronization (CPS) scheme in the time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controllers are designed differently for the nodes in one community which have direct connections to the nodes in the other communities and the nodes without direct connections to the nodes in the other communities. Some sufficient criteria are derived to ensure the nodes in the same group projective synchronize and there is also projective synchronization between nodes in different groups. Particularly, the weight configuration matrix is not assumed to be symmetric or irreducible. The numerical simulations are performed to verify the effectiveness of the theoretical results.
Keywords:  cluster projective synchronization      complex network      time-varying delay adaptive controller  
Received:  16 February 2012      Revised:  20 May 2012      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 70871056 and 71271103) and the Six Talents Peak Foundation of Jiangsu Province, China.
Corresponding Authors:  Yao Hong-Xing     E-mail:  hxyao@ujs.edu.cn

Cite this article: 

Yao Hong-Xing (姚洪兴), Wang Shu-Guo (王树国 ) Cluster projective synchronization of complex networks with nonidentical dynamical nodes 2012 Chin. Phys. B 21 110506

[1] Li Z K, Duan Z S and Chen G R 2010 IEEE Transactions on Circuits and Systems-I 57 213
[2] Duan Z S, Chen G R and Huang L 2007 Phys. Rev. E 76 056103
[3] Wang Y C, Zhang H G, Wang X Y and Yang D S 2010 IEEE Trans. on Systems, Man, Cybernetics-Part B: Cybernetics 40 1468
[4] Nian F Z, Wang X Y, Niu Y J and Lin D 2010 Applied Mathematics and Computation 217 2481
[5] Nian F Z and Wang X Y 2010 International Journal of Modern Physics C 21 457
[6] Zheng S 2012 Phys. Scr. 85 015003
[7] Bowonga S, Kakmenib M and Koinac R 2006 Math. Comput. Simul. 71 212
[8] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804
[9] Li C D and Liao X F 2004 Chaos Soliton. Fract. 22 857
[10] Li G H 2009 Chaos Soliton. Fract. 41 2630
[11] Zhang X D, Zhao P D and Li A H 2010 Commun. Theor. Phys. 53 1105
[12] Wang S G, Yao H X, Zheng S and Xie Y 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 2997
[13] Wang M J, Wang X Y and Niu Y J 2011 Chin. Phys. B 20 010508
[14] Wang X Y and Fan B 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 953
[15] Niu Y J, Wang X Y and Pei B N 2012 Chin. Phys. B 21 030503
[16] Zheng S 2012 Nonlinear Dyn. 67 2621
[17] Zhou J, Lu J A and Lü J H 2008 Automatica 44 996
[18] Liang Y and Wang X Y 2012 Acta Phys. Sin. 61 038901 (in Chinese)
[19] Nian F Z and Wang X Y 2011 Chaos 21 043131
[20] Ma T D, Zhang H G and Wang Z L 2007 Acta Phys. Sin. 56 3796 (in Chinese)
[21] Guo L X, Hu M F and Xu Z Y 2010 Chin. Phys. B 19 020512
[22] Li K and Lai C H 2008 Phys. Lett. A 372 1601
[23] Xia W G and Cao J D 2009 Chaos 19 013120
[24] Kaneko K 1994 Phys. D 75 55
[25] Rulkov N F 1996 Chaos 6 262
[26] Belykh V N, Osipov G V, Petrov V S, Suykens J A K and Vandewalle J 2008 Chaos 18 037106
[27] Liu X W and Chen T P 2011 IEEE Transactions on Neural Networks 22 1009
[28] Wu X J and Lu H T 2011 Phys. Lett. A 375 1559
[29] Wu Z Y and Fu X C 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 1628
[30] Khalil H K 2002 Nonlinear Systems (3rd edn.) (New Jersey: Prentice Hall)
[31] Wang J W, Ma Q H, Zeng L and Abd-Elouahab M S 2011 Chaos 21 013121
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[12] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[13] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[14] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[15] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
No Suggested Reading articles found!