CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Interface-related switching behaviors of amorphous Pr0.67Sr0.33MnO3-based memory cells |
Zhang Ting (张婷), Bai Ying (白莹), Jia Cai-Hong (贾彩虹), Zhang Wei-Feng (张伟风) |
Key Laboratory of Photovoltaic Techniques of Henan Province,School of Physics and Electronics, Henan University, Kaifeng 475004, China |
|
|
Abstract The resistive switching properties in amorphous Pr0.67Sr0.33MnO3 films deposited by pulsed laser deposition are investigated. Reproducible and bipolar counter-8-shape and 8-shape switching behaviours of Au/Pr0.67Sr0.33MnO3/F:SnO2 junctions are obtained at room temperature. Dramatically, the coexistence of two switching polarities could be reversibly adjusted by an applied voltage range. The results allocated those two switching types to areas of different defect densities beneath the same electrode. The migration of oxygen vacancies and the trapping effect of electrons under an applied electric field play an important role. An interface-effect-related resistance switching is proposed in an amorphous Pr0.67Sr0.33MnO3-based memory cell.
|
Received: 17 February 2012
Revised: 09 March 2012
Accepted manuscript online:
|
PACS:
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
73.50.Fq
|
(High-field and nonlinear effects)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60976016), the Program for Innovative Research Team in Science and Technology in University of Henan Province (IRTSTUHN), China (Grant No. 2012IRTSTHN004), and the Foundation Co-established by the Province and the Ministry in Henan University, China (Grant No. SBGJ090503). |
Corresponding Authors:
Zhang Wei-Feng
E-mail: wfzhang@henu.edu.cn
|
Cite this article:
Zhang Ting (张婷), Bai Ying (白莹), Jia Cai-Hong (贾彩虹), Zhang Wei-Feng (张伟风) Interface-related switching behaviors of amorphous Pr0.67Sr0.33MnO3-based memory cells 2012 Chin. Phys. B 21 107304
|
[1] |
Garcia V, Fusil S, Bouzehouane K, Enouz-Vedrenne S, Mathur N D, Barthélémy A and Bibes M 2009 Nature 460 81
|
[2] |
Li Y T, Long S B, Lü H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu M 2011 Chin. Phys. B 20 017305
|
[3] |
Zhang T, Ding L H and Zhang W F 2012 Chin. Phys. B 21 047301
|
[4] |
Liu S Q, Wu N J and Ignatiev A 2000 Appl. Phys. Lett. 76 2749
|
[5] |
Lee W, Jo G, Lee S, Park J, Jo M, Lee J, Jung S, Kim S, Shin J, Park S, Lee T and Hwang H 2011 Appl. Phys. Lett. 98 032105
|
[6] |
Shibuya K, Dittmann R, Mi S and Waser R 2010 Adv. Mater. 22 411
|
[7] |
Muenstermann R, Menke T, Dittmann R and Waser R 2010 Adv. Mater. 22 4819
|
[8] |
Cho S, Park W G, Cho D Y, Berthet P and Oh S J 2010 J. Appl. Phys. 108 103716
|
[9] |
Yu S, Gao B, Dai H B, Sun B, Liu L F, Liu X Y, Han R Q, Kang J F and Yu B 2010 Solid-State Lett. 13 H36
|
[10] |
Jeong H Y, Lee J Y and Choi S Y 2010 Adv. Funct. Mater. 20 3912
|
[11] |
Gao X, Xia Y D, Xu B, Kong J Z, Guo H X, Li K, Li H T, Xu H N, Chen K, Yin J and Liu Z G 2010 J. Appl. Phys. 108 074506
|
[12] |
Jung K, Kim Y, Jung W, Im H, Park B, Hong J, Lee J, Park J and Lee J K 2010 Appl. Phys. Lett. 97 233509
|
[13] |
Sawa A, Fujii T, Kawasaki M and Tokura Y 2004 Appl. Phys. Lett. 85 4073
|
[14] |
Oka T and Nagaosa N 2005 Phys. Rev. Lett. 95 266403
|
[15] |
Janousch M, Meijer G I, Staub U, Delley B, Karg S F and Andreasson B P 2007 Adv. Mater. 19 2232
|
[16] |
Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W, Chen L and Jacobson A J 2004 Appl. Phys. Lett. 85 317
|
[17] |
Seong D, Jo M, Lee D and Hwang H 2007 Solid-State Lett. 10 H168
|
[18] |
Nian Y B, Strozier J, Wu N J, Chen X and Ignatiev A 2007 Phys. Rev. Lett. 98 146403
|
[19] |
Baikalov A, Wang Y Q, Shen B, Lorenz B, Tsui S, Sun Y Y, Xue Y Y and Chu C W 2003 Appl. Phys. Lett. 83 957
|
[20] |
Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
|
[21] |
Dong R, Xiang W F, Lee D S, Oh S J, Seong D J, Heo S H, Choi H J, Kwon M J, Chang M, Jo M, Hasan M and Hwang H 2007 Appl. Phys. Lett. 90 182118
|
[22] |
Xia Y D, Liu Z G, Wang Y, Shi L, Chen L, Yin J and Meng X K 2007 Appl. Phys. Lett. 91 102904
|
[23] |
Fujii T, Kawasaki M, Sawa A, Kawazoe Y, Akoh H and Tokura Y 2007 Phys. Rev. B 75 165101
|
[24] |
Janousch M, Meijer G I, Staub U, Delley B, Karg S F and Andresson B P 2007 Adv. Mater. 19 2232
|
[25] |
Yang J J, Pickett M D, Li X, Ohlberg D A A, Stewart D R and Williams R S 2008 Nat. Nanotechnol. 3 429
|
[26] |
Szot K, Speier W, Carius R, Zastrow U and Beyer W 2002 Phys. Rev. Lett. 88 075508
|
[27] |
Bernéde J C, Cattin L, Morsli M and Berredjem Y 2008 Sol. Energy Mater. Sol. Cells 92 1508
|
[28] |
Reagor D W, Lee S Y, Li Y and Jia Q X 2004 J. Appl. Phys. 95 7971
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|