Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 107101    DOI: 10.1088/1674-1056/21/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structure and electronic structure of S-doped graphitic C3N4 investigated by density functional theory

Chen Gang (陈刚)a b, Gao Shang-Peng (高尚鹏)b
a Department of Materials Science, Fudan University, Shanghai 200433, China;
b School of Physical Science and Technology, Yunnan University, Kunming 650091, China
Abstract  The structures of the heptazine-based graphitic C3N4 and the S-doped graphitic C3N4 are investigated by using the density functional theory with a semi-empirical dispersion correction for the weak long-range interaction between layers. The corrugated structure is found to be energetically favorable for both the pure and the S-doped graphitic C3N4. The S doptant is prone to substitute the N atom bonded with only two nearest C atoms. The band structure calculation reveals that this kind of S doping causes a favorable red shift of the light absorption threshold and can improve the electroconductibility and the photocatalytic activity of the graphitic C3N4.
Keywords:  photocatalyst      C3N4      density functional theory      dopant  
Received:  14 June 2012      Revised:  06 July 2012      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Nr (Semiconductor compounds)  
  61.72.S- (Impurities in crystals)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606403) and the Doctoral Fund of the Ministry of Education of China (Grant No. 20090071120062).
Corresponding Authors:  Gao Shang-Peng     E-mail:  gaosp@fudan.edu.cn

Cite this article: 

Chen Gang (陈刚), Gao Shang-Peng (高尚鹏) Structure and electronic structure of S-doped graphitic C3N4 investigated by density functional theory 2012 Chin. Phys. B 21 107101

[1] Fujishima A and Honda K 1972 Nature 238 37
[2] Ni M, Leung M K H, Leung D Y C and Sumathy K 2007 Renew. Sust. Energ. 11 401
[3] Gnaser H, Huber B and Ziegler C 2004 Nanocrystalline TiO2 for Photocatalysis In: Nalwa H S ed. Encyclopedia of Nanoscience and Nanotechnology Vol. 6, pp. 505-535
[4] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
[5] Lin Y M, Jiang Z Y, Hu X Y, Zhang X D, Fan J, Miao H and Shang Y B 2012 Chin. Phys. B 21 033103
[6] Gao P, Wu J, Liu Q J and Zhou W F 2010 Chin. Phys. B 19 087103
[7] Yi Z, Ye J, Kikugawa N, Kako T, Ouyang S, Stuart-Williams H, Yang H, Cao J, Luo W, Li Z, Liu Y and Withers R L 2010 Nat. Mater. 9 559
[8] Kale B B, Baeg J O, Lee S M, Chang H, Moon S J and Lee C W 2006 Adv. Funct. Mater. 16 1349
[9] Zhang L, Djerdj I, Cao M, Antonietti M and Niederberger M 2007 Adv. Mater. 19 2083
[10] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K and Antonietti M 2009 Nat. Mater. 8 76
[11] Zhu J, Wei Y, Chen W, Zhao Z and Thomas A 2010 Chem. Commun. 46 6965
[12] Liu J, Zhang T, Wang Z, Dawson G and Chen W 2011 J. Mater. Chem. 21 14398
[13] Yan S C, Li Z S and Zou Z G 2009 Langmuir 25 10397
[14] Ge L 2011 Mater. Lett. 65 2652
[15] Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping J D, Fu X, Antonietti M and Wang X 2010 Angew. Chem. Int. Ed. 49 441
[16] Sehnert J, Baerwinkel K and Senker J 2007 J. Phys. Chem. B 111 10671
[17] Maeda K, Wang X, Nishihara Y, Lu D, Antonietti M and Domen K 2009 J. Phys. Chem. C 113 4940
[18] Yue B, Li Q, Iwai H, Kako T and Ye J 2011 Sci. Technol. Adv. Mater. 12 034401
[19] Ge L, Han C, Liu J and Li Y 2011 Appl. Catal. A-Gen. 409-410 215
[20] Yan S C, Li Z S and Zou Z G 2010 Langmuir 26 3894
[21] Zhang Y, Mori T, Ye J and Antonietti M 2010 J. Am. Chem. Soc. 132 6294
[22] Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q and Cheng H M 2010 J. Am. Chem. Soc. 132 11642
[23] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[24] Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005
[25] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104.
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Pfrommer B G, Côté M, Louie S G and Cohen M L 1997 J. Comput. Phys. 131 233
[28] Kroke E and Schwarz M 2004 Coordin. Chem. Rev. 248 493
[29] Thomas A, Fischer A, Goettmann F, Antonietti M, Müller J O, Schlögl R and Carlsson J M 2008 J. Mater. Chem. 18 4893
[30] Gracia J and Kroll P 2009 J. Mater. Chem. 19 3013
[31] Xu Y and Gao S P 2012 Int. J. Hydrogen Energy 37 11072
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Radiation resistance property of barium gallo-germanate glass doped by Nb2O5
Gui-Rong Liu(刘桂榕), Xiao-Dong Chen(陈晓东), Hong-Gang Liu(刘红刚), Yan Wang(王琰), Min Sun(孙敏), Na Yan(闫娜), Qi Qian(钱奇), and Zhong-Min Yang(杨中民). Chin. Phys. B, 2022, 31(2): 027801.
No Suggested Reading articles found!