Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090701    DOI: 10.1088/1674-1056/21/9/090701
GENERAL Prev   Next  

Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption

Sun You-Wen (孙友文)a, Zeng Yi (曾议)a, Liu Wen-Qing (刘文清)a, Xie Pin-Hua (谢品华)a, Chan Ka-Lok (陈嘉乐)b, Li Xian-Xin (李先欣)a, Wang Shi-Mei (汪世美)a, Huang Shu-Hua (黄书华)a
a Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
b School of Energy and Environment, City University of Hong Kong, Hong Kong, China
Abstract  In this paper, we present the simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to correct the cross-interferences among the target gases. The calculation of calibration curves is based on least-square fittings with third-order polynomials, and the interference functions are approximated by linear curves. The pure absorbance of each gas is obtained by solving three simultaneous equations using the fitted interference functions. Through the interference correction, the signal created at each filter channel only depends on the absorption of the intended gas. Gas mixture samples with different concentrations of CO2, CO, and NO are pumped into the sample cell for analysis. The results show that the measurement error of each gas is less than 4.5%.
Keywords:  environmental pollution measurements      optical measurement technology      non-dispersive infrared technique      gas analysis  
Received:  07 December 2011      Revised:  21 February 2012      Accepted manuscript online: 
PACS:  07.88.+y (Instruments for environmental pollution measurements)  
  42.87.-d (Optical testing techniques)  
  42.72.Ai (Infrared sources)  
  33.20.Ea (Infrared spectra)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA063006), the National Natural Science Foundation of China (Grant No. 40805015), and the Excellent Youth Scientific Foundation of Anhui Province, China (Grant No. 10040606Y28).
Corresponding Authors:  Liu Wen-Qing     E-mail:  wqliu@aiofm.ac.cn

Cite this article: 

Sun You-Wen (孙友文), Zeng Yi (曾议), Liu Wen-Qing (刘文清), Xie Pin-Hua (谢品华), Chan Ka-Lok (陈嘉乐), Li Xian-Xin (李先欣), Wang Shi-Mei (汪世美), Huang Shu-Hua (黄书华) Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption 2012 Chin. Phys. B 21 090701

[1] Chen C H, Huang C and Jing Q 2007 Atmospheric Environment 41 5334
[2] Tan Q L, Zhang W D, Xue C Y and Xiong J J 2008 Optics & Laser Technology 40 703
[3] Herget W F, Jahnke J A, Burch D E and Gryvnak D A 1976 Appl. Opt. 15 1222
[4] Goody R M 1968 J. Opt. Soc. Am. 58 900
[5] Lopez F and Frutos D J 1993 Sensors and Actuators A: Physical. 37 502
[6] Harold S L, Satoru S, Louis J D and Alberto M G (U.S. Patent) 5 886 348 [1999-03-23]
[7] Lehto A (U.S. Patent) 5 369 278 1998 [1994-11-29]
[8] Wong J Y (U.S. Patent) 11 198 106 [2007-02-08]
[9] Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A and Champion J P 2009 J. Quant. Spectrosc. Radiat. Transf. 110 533
[10] Galais A, Fortunato G and Chavel P 1985 Appl. Opt. 24 2127
[11] Heusinkveld B G, Jacobs A F G and Holtslag A A M 2008 Agricultural and Forest Meteorology 148 1563
[12] Appel D, Marzoratti G E, Nabar S H and Mouradian R F (U.S. Patent) 12 112 436 [2009-08-27]
[13] Tyson L, Ling Y C and Mann C K 1984 Applied Spectroscopy 38 663
[14] Campbell J Y, Lo A W and Mackinlay A C 1996 The Econometrics of Financial Markets (New York: Princeton University Press) p. 27
[15] von Storch H and Zwiers F W 1996 Statistical Analysis in Climate Research (Cambridge: Cambridge University Press) p. 103
[16] Decastro A J, Meneses J, Briz S and Lopez F 1999 Review of Scientific Instruments 70 3156
[17] Goody R M and Yung Y L 1989 Atmospheric Radiation (Oxford: Oxford University Press) p. 107
[18] Burch D E, Singleton E B and Williams D 1962 Appl. Opt. 15 359
[19] Burch D E, Gryvnak D A, Patty R R and Bartky C E 1969 J. Opt. Soc. Am. 59 267
[20] Hill D W and Powell T 1968 Non Dispersive Infrared Gas Analysis (New York: Plenum Press) p. 203
[21] Kidd G 2002 Spectrochimica Acta Part A 58 2373
[22] Wei D Y, Zheng T, Lu L P and Ming T D 2009 Chin. Opt. Lett. 7 201
[23] Asadov H H, Mirzabalayev I M, Aliyev D Z, Agayev J A, Azimova S R, Nabiyev N A and Abdullayeva S N 2009 Chin. Opt. Lett. 7 361
[24] Björck A 1996 Numerical Methods for Least Squares Problems (New York: SIAM)
[25] Rao C R, Toutenburg H, Fieger A, Heumann C, Nittner T and Scheid S 1999 Springer Series in Statistics (Berlin: Springer) p. 307
[26] Derek Y 1968 Earth and Planetary Science Letters 5 320
[27] Marcel M and Andreas D Z 1990 Analytical Chemistry 62 2220
[28] Chang J, Zhang Z H and Wang R R 2011 Acta Phys. Sin. 60 342 (in Chinese)
[29] Liu F, Wang J, Zhao J, Xu Y and Meng Q T 2011 Acta Phys. Sin. 60 40202 (in Chinese)
[30] Tian X G, Ling F R, He J, Liu J S and Yao J Q 2011 Acta Phys. Sin. 60 124201 (in Chinese)
[1] Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity
Hua-Wei Jin(靳华伟), Ren-Zhi Hu(胡仁志), Pin-Hua Xie(谢品华), and Ping Luo(罗平). Chin. Phys. B, 2022, 31(6): 060703.
[2] Wide dynamic detection range of methane gas based on enhanced cavity absorption spectroscopy
Yu Wang(汪玉), Bo-Kun Ding(丁伯坤), Kun-Yang Wang(王坤阳), Jiao-Xu Mei(梅教旭), Ze-Lin Han(韩泽林), Tu Tan(谈图), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2022, 31(4): 040705.
[3] Design of NO2 photoacoustic sensor with high reflective mirror based on low power blue diode laser
Hua-Wei Jin(靳华伟), Pin-Hua Xie(谢品华), Ren-Zhi Hu(胡仁志), Chong-Chong Huang(黄崇崇), Chuan Lin(林川), Feng-Yang Wang(王凤阳). Chin. Phys. B, 2020, 29(6): 060701.
[4] Atmospheric N2O gas detection based on an inter-band cascade laser around 3.939 μm
Chun-Yan Sun(孙春艳), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Jing-Jing Wang(王静静), Gang Cheng(程刚), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2020, 29(1): 010704.
[5] Novel infrared differential optical absorption spectroscopy remote sensing system to measure carbon dioxide emission
Ru-Wen Wang(王汝雯), Pin-Hua Xie(谢品华), Jin Xu(徐晋), Ang Li(李昂). Chin. Phys. B, 2019, 28(1): 013301.
[6] Absolute density measurement of nitrogen dioxide with cavity-enhanced laser-induced fluorescence
Zheng-Hai Yang(杨正海), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平). Chin. Phys. B, 2018, 27(10): 100601.
[7] Daily variation of radon gas and its short-lived progeny concentration near ground level and estimation of aerosol residence time
M Mohery, A M Abdallah, A Ali, S S Baz. Chin. Phys. B, 2016, 25(5): 050701.
[8] Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy
Xue Lu(卢雪), Min Qin(秦敏), Pin-Hua Xie(谢品华), Jun Duan(段俊), Wu Fang(方武), Liu-Yi Ling(凌六一), Lan-Lan Shen(沈兰兰), Jian-Guo Liu(刘建国), Wen-Qing Liu(刘文清). Chin. Phys. B, 2016, 25(2): 024210.
[9] Theoretical analysis of stack gas emission velocity measurement by optical scintillation
Yang Yang (杨阳), Dong Feng-Zhong (董凤忠), Ni Zhi-Bo (倪志波), Pang Tao (庞涛), Zeng Zong-Yong (曾宗泳), Wu Bian (吴边), Zhang Zhi-Rong (张志荣). Chin. Phys. B, 2014, 23(4): 040703.
No Suggested Reading articles found!