|
|
Absolute density measurement of nitrogen dioxide with cavity-enhanced laser-induced fluorescence |
Zheng-Hai Yang(杨正海), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平) |
State Key Laboratory of Precision Spectroscopy, School of Physics and Material, East China Normal University, Shanghai 200062, China |
|
|
Abstract The absolute number density of nitrogen dioxide (NO2) seeded in argon is measured with cavity-enhanced laser-induced fluorescence (CELIF) through using a pulsed laser beam for the first time. The cavity ring down (CRD) signal is acquired simultaneously and used for normalizing the LIF signal and determining the relationship between the measured CELIF signal and the NO2 number density. The minimum detectable NO2 density down to (3.6±0.1)×108 cm-3 is measured in 60 s of acquisition time by the CELIF method. The minimum absorption coefficient is measured to be (2.0±0.1)×10-10 cm-1, corresponding to a noise equivalent absorption sensitivity of (2.2±0.1)×10-9 cm-1·Hz-1/2. The experimental system demonstrated here can be further improved in its sensitivity and used for environmental monitoring of outdoor NO2 pollution.
|
Received: 21 May 2018
Revised: 10 August 2018
Accepted manuscript online:
|
PACS:
|
06.20.Dk
|
(Measurement and error theory)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
07.88.+y
|
(Instruments for environmental pollution measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504112, 91536218, and 11604100). |
Corresponding Authors:
Lian-Zhong Deng
E-mail: lzdeng@phy.ecnu.edu.cn
|
Cite this article:
Zheng-Hai Yang(杨正海), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平) Absolute density measurement of nitrogen dioxide with cavity-enhanced laser-induced fluorescence 2018 Chin. Phys. B 27 100601
|
[1] |
Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R and Hinds E A 2011 Nature 473 493
|
[2] |
Cheng C F, Sun Y R and Hu S M 2015 Chin. Phys. B 24 053301
|
[3] |
Stone D, Whalley L K and Heard D E 2012 Chem. Soc. Rev. 41 6348
|
[4] |
Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L and Ye J 2006 Phys. Rev. A 73 063404
|
[5] |
Delon A, Georges R and Jost R 1995 J. Chem. Phys. 103 7740
|
[6] |
Richter A, Burrows J P, Nüß H, Granier C and Niemeier U 2005 Nature 437 129
|
[7] |
Logan J A, Prather M J, Wofsy S C and McElroy M B 1981 J. Geophys. Res. 86 7210
|
[8] |
Thornton J A, Wooldridge P J, Cohen R C, Williams E J, Hereid D, Fehsenfeld F C, Stutz J and Alicke B 2003 J. Geophys. Res. 108 4496
|
[9] |
Washenfelder R A, Attwood A R, Flores J M, Zarzana K J, Rudich Y and Brown S S 2016 Atmos. Meas. Tech. 9 41
|
[10] |
Venables D S, Gherman T, Orphal J, Wenger J C and Ruth A A 2006 Environ. Sci. Technol. 40 6758
|
[11] |
Werle P, Mücke R and Slemr F 1993 Appl. Phys. B 57 131
|
[12] |
Osthoff H D, Brown S S, Ryerson T B, Fortin T J, Lerner B M, Williams E J, Pettersson A, Baynard T, Dubé W P, Ciciora S J and Ravishankara A R 2006 J. Geophys. Res. 111 D12305
|
[13] |
Wojtas J, Mikolajczyk J and Bielecki Z 2013 Sensors 13 7570
|
[14] |
Brown S S, Stark H and Ravishankara A R 2002 Appl. Phys. B 75 173
|
[15] |
Brown S S, Stark H, Ciciora S J and Ravishankara A R 2001 Geophys. Res. Lett. 28 3227
|
[16] |
Kebabian P L, Wood E C, Herndon S C and Freedman A 2008 Environ. Sci. Technol. 42 6040
|
[17] |
Matsumi Y, Murakami S, Kono M, Takahashi K, Koike M and Knodo Y 2001 Anal. Chem. 73 5485
|
[18] |
Matsumoto J and Kajii Y 2003 Atomos. Environ. 37 4847
|
[19] |
Bradshaw J, Davis D, Crawford J, Chen G, Shetter R, Müller M, Gregory G, Sachse G, Blake D, Heikes B, Singh H, Mastromarino J and Sandholm S 1999 Geophys. Res. Lett. 26 471
|
[20] |
Ryerson T B, Williams E J and Fehsenfeld F C 2000 J. Geophys. Res. 105 26447
|
[21] |
Sanders S E, Willis O R, Nahler N H and Wrede E 2018 J. Chem. Phys. 149 014201
|
[22] |
Mizouri A, Deng L Z, Eardley J S, Nahler N H, Wrede E and Carty D 2013 Phys. Chem. Chem. Phys. 15 19575
|
[23] |
Harrison R M 2018 Npj Clim. Atmos. Sci. 1 5
|
[24] |
Sugimoto N, Takeuchi N, Iijima H, Arai T and Takezawa S 1984 Chem. Phys. Lett. 106 403
|
[25] |
Vandaele A C, Hermans C, Simon P C, Van Roozendael M, Guilmot J M, Carleer M and Colin R 1996 J. Atmos. Chem. 25 289
|
[26] |
Evertsen R, Staicu A, Dam N, Van Vliet A and Ter Meulen J J 2002 Appl. Phys. B:Lasers Opt. 74 465
|
[27] |
Burrows J P, Dehn A, Deters B, Himmelmann S, Richter A, Voigt S and Orphal J 1998 J. Quantun. Spectrosc. Radiat. Transfer 60 1025
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|