Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 024210    DOI: 10.1088/1674-1056/25/2/024210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy

Xue Lu(卢雪)1,2, Min Qin(秦敏)1, Pin-Hua Xie(谢品华)1,3, Jun Duan(段俊)1, Wu Fang(方武)1, Liu-Yi Ling(凌六一)1,4, Lan-Lan Shen(沈兰兰)1, Jian-Guo Liu(刘建国)1,3, Wen-Qing Liu(刘文清)1,3
1. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China;
2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China;
3. School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China;
4. Institute of Electric and Information Technology, Anhui University of Science and Technology, Huainan 232001, China
Abstract  NO3 radicals accumulate during the night, thereby being the most critical night oxidant. Owing to the low concentration and dramatic variation, the detection of atmospheric NO3 radicals is still challenging. In this paper, an LED-based Long Path Differential Optical Absorption Spectroscopy (LPDOAS) instrument is developed for measuring the atmospheric NO3 radicals. This instrument is composed of a Schmidt-Cassegrain telescope, a combined emitting and receiving fiber, and a red LED equipped with a thermostat, and has a center wavelength of 660 nm, covering the NO3 strongest absorption peak (662 nm). The influence of LED temperature fluctuations is discussed. The temperature of the LED lamp with a home-made thermostat is tested, showing a stability of ± 0.1 ℃. The principle and fitting analyses of LED-LPDOAS are presented. A retrieval example and a time series of NO3 radical concentrations with good continuity for one night are shown. The detection limit of NO3 for 2.6-km optical path is about 10 ppt.
Keywords:  DOAS system      NO3 radical      red LED      fiber transceiver  
Received:  22 July 2015      Revised:  23 September 2015      Accepted manuscript online: 
PACS:  42.68.Ca (Spectral absorption by atmospheric gases)  
  07.60.Rd (Visible and ultraviolet spectrometers)  
  07.60.Vg (Fiber-optic instruments)  
  07.88.+y (Instruments for environmental pollution measurements)  
Fund: Project supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant Nos. XDB05040200 and XDB05010500).
Corresponding Authors:  Min Qin     E-mail:  mqin@aiofm.ac.cn

Cite this article: 

Xue Lu(卢雪), Min Qin(秦敏), Pin-Hua Xie(谢品华), Jun Duan(段俊), Wu Fang(方武), Liu-Yi Ling(凌六一), Lan-Lan Shen(沈兰兰), Jian-Guo Liu(刘建国), Wen-Qing Liu(刘文清) Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy 2016 Chin. Phys. B 25 024210

[1] Rollins AW, Browne E C, Min K E, Pusede S E, Wooldridge P J, Gentner D R, Goldstein A H, Liu S, Day D A, Russell L M and Cohen R C 2012 Science 337 1210
[2] Fry J L, Kiendler-Scharr A, Rollins A W, Brauers T, Brown S S, Dorn H P, Dube W P, Fuchs H, Mensah A, Rohrer F, Tillmann R, Wahner A, Wooldridge P J and Cohen R C 2011 Atmos. Chem. Phys. 11 3879
[3] Fry J L and Sackinger K 2012 Atmos. Chem. Phys. 12 8797
[4] Atkinson R 2000 Atmos. Environ. 34 2063
[5] Brown S S, Stutz J. 2012 Chem. Soc. Rev. 41 6405
[6] Matsumoto J, Imagawa K, Imai H, Kosugi N, Ideguchi M, Kato S and Kajii Y. 2006 Atmos. Environ. 40 6294
[7] Dorn H P, Apodaca R L, Ball S M, et al. 2013 Atmos. Meas. Tech. 6 1111
[8] Asaf D, Tas E, Pedersen D, Peleg M and Luria M 2010 Environ. Sci. Technol. 44 5901
[9] Wang S S, Shi C Z, Zhou B, Zhao H, Wang Z R, Yang S N and Chen L M 2013 Atmos. Environ. 70 401
[10] Wagner N L, Dube W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B and Brown S S 2011 Atmos. Measur. Tech. 4 1227
[11] Brown S S 2003 Chem. Rev. 103 5219
[12] Ventrillard-Courtillot I, Sciamma O'Brien E, Kassi S, Méjean G and Romanini D 2010 Appl. Phys. B 101 661
[13] Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M and Jones R L 2011 Atmos. Meas. Tech. 4 1759
[14] Ling L Y, Qin M, Xie P H, Hu R Z, Fang W, Jiang Y, Liu J G and Liu W Q 2012 Acta Phys. Sin. 61 140703 (in Chinese)
[15] Geyer A, Alicke B, Mihelcie D, Stutz J and Platt U 1999 J. Geophys. Res-Atmos. 104 26097
[16] Matsumoto J, Kosugi N, Imai H and Kajii Y 2005 B Rev. Sci. Instrum. 76 064101
[17] Wang X, Wang T, Yan C, Tham Y J, Xue L, Xu Z and Zha Q 2014 Atmos. Measur. Tech. 7 1
[18] Platt U, Perner D, Winer A M, Harris G W and Pitts J N 1980 Geophys. Res. Lett. 7 89
[19] Kern C, Trick S, Rippel B and Platt U 2006 Appl. Opt. 45 2077
[20] Chan K L, Pöhler D, Kuhlmann G, Hartl A, Platt U and Wenig M O 2012 Atmos. Measur. Tech. 5 901
[21] Chan K L, Ling L Y, Andreas H, Zheng N N, Gerrit K, Qin M, Sun Y W, Xie P H, Liu W Q and Mark W 2012 Chin. Phys. B 21 119301
[22] Li S W, Xie P H, Liu W Q, Si F Q, Li A and Peng F M 2008 Acta Phys. Sin. 57 1963 (in Chinese)
[23] Li S W, Liu W Q, Wang J T, Xie P H and Wang X D 2013 Spectroscopy and Spectral Analysis 33 444
[24] Merten A, Tschritter J and Platt U 2011 Appl. Opt. 50 738
[25] Orphal J, Fellows C E and Flaud P M. 2003 J. Geophys. Res-Atmos. 108 4077
[26] Schneider W, Moortgat G K, Tyndall G S and Burrows J P 1987 J. Photoch. Photobio. A 40 195
[27] Rothmann L S, Rinsland C P, Goldman A., Massie S T, Edwards D P, Flaud J M, Perrin A, Camy-Peyter C, Dana V, Mandin J Y, Schroeder J, McCann A, Gamache R R, Wattson R B, Yoshino K, Chance K V, Jucks K W, Brown L R, Nemtchinov V and Varanasi P 1998 J. Quantum Spectros. Rad. 60 665
[28] Kraus S 2005 "DOASIS A Framework Design for DOAS", Ph. D. Thesis (Mannheim: University of Mannheim)
[29] Stutz J and Platt U 1996 Appl. Opt. 35 6041
[1] Spectral attenuation of a 400-nm laser pulse propagating through a plasma filament induced by an intense femtosecond laser pulse
Quan-Jun Wang(王全军), Rao Chen(陈娆), Jia-Chen Zhao(赵家琛), Chun-Lin Sun(孙春霖), Xiao-Zhen Wang(王小珍), Jing-Jie Ding(丁晶洁), Zuo-Ye Liu(刘作业), Bi-Tao Hu(胡碧涛). Chin. Phys. B, 2020, 29(1): 013301.
[2] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
[3] Wavelength modulation spectroscopy for measurements of gas parameters in combustion field
Dong-Sheng Qu(屈东胜), Yan-Ji Hong(洪延姬), Guang-Yu Wang(王广宇), Hu Pan(潘虎). Chin. Phys. B, 2017, 26(6): 064207.
[4] Observation of tropospheric NO2 by airborne multi-axis differential optical absorption spectroscopy in the Pearl River Delta region, south China
Xu Jin (徐晋), Xie Pin-Hua (谢品华), Si Fu-Qi (司福祺), Li Ang (李昂), Wu Feng-Cheng (吴丰成), Wang Yang (王杨), Liu Jian-Guo (刘建国), Liu Wen-Qing (刘文清), Andreas Hartl, Chan Ka Lok. Chin. Phys. B, 2014, 23(9): 094210.
[5] Ground-based remote sensing of atmospheric total column CO2 and CH4 by direct sunlight in Hefei
Cheng Si-Yang (程巳阳), Xu Liang (徐亮), Gao Min-Guang (高闽光), Li Sheng (李胜), Jin Ling (金岭), Tong Jing-Jing (童晶晶), Wei Xiu-Li (魏秀丽), Liu Jian-Guo (刘建国), Liu Wen-Qing (刘文清). Chin. Phys. B, 2013, 22(12): 129201.
[6] Calibration-free wavelength modulation spectroscopy for gas concentration measurements under low-absorbance conditions
Che Lu (车璐), Ding Yan-Jun (丁艳军), Peng Zhi-Min (彭志敏), Li Xiao-Hang (李晓航). Chin. Phys. B, 2012, 21(12): 127803.
[7] Measurements of NO2 mixing ratios with topographic target light scattering-differential optical absorption spectroscopy system and comparisons to point monitoring technique
Wang Yang (王杨), Li Ang (李昂), Xie Pin-Hua (谢品华), Zeng Yi (曾议), Wang Rui-Bin (王瑞斌), Chen Hao (陈浩), Pei Xian (裴显), Liu Jian-Guo (刘建国), and Liu Wen-Qing (刘文清 ). Chin. Phys. B, 2012, 21(11): 114211.
[8] Low temperature laser absorption spectra of methane in the near-infrared at 1.65 μm for lower state energy determination
Gao Wei(高伟), Chen Wei-Dong(陈卫东), Zhang Wei-Jun(张为俊), Yuan Yi-Qian(袁怿谦), and Gao Xiao-Ming(高晓明) . Chin. Phys. B, 2012, 21(1): 014211.
No Suggested Reading articles found!