Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 087102    DOI: 10.1088/1674-1056/21/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Energetics and electronic structure of refractory elements in the dislocation of NiAl

Chen Li-Qun (陈丽群)a, Peng Xiao-Fang (彭小方)a, Yu Tao (于涛)b
a College of Sciences, Central South University of Forestry & Technology, Changsha 410004, China;
b Central Iron and Steel Research Institute, Beijing 100081, China
Abstract  Using the DMol and the discrete variational method within the framework of density functional theory, we study the alloying effects of Nb, Ti, and V in the [100] (010) edge dislocation core of NiAl. We find that when Nb (Ti, V) is substituted for Al in the center-Al, the binding energy of the system reduces 3.00 eV (2.98 eV, 2.66 eV). When Nb (Ti, V) is substituted for Ni in the center-Ni, the binding energy of the system reduces only 0.47 eV (0.16 eV, 0.09 eV). This shows that Nb (Ti, V) exhibits a strong Al site preference, which is in agreement with experimental and other theoretical results. The analyses of the charge distribution, the interatomic energy and the partial density of states show that some charge accumulations appear between impurity atom and Ni atoms, and the strong bonding states are formed between impurity atom and neighbouring host atoms due mainly to the hybridization of 4d5s(3d4s) orbitals of impurity atom and 3d4s4p orbitals of host Ni atoms. The impurity induces a strong pinning effect on the [100] (010) edge dislocation motion in NiAl, which is related to the mechanical properties of NiAl alloy.
Keywords:  electronic structure      dislocation      intermetallic compounds      impurity  
Received:  12 January 2012      Revised:  12 February 2012      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.55.Ak (Metals, semimetals, and alloys)  
  61.72.Lk (Linear defects: dislocations, disclinations)  
  61.72.sh (Impurity distribution)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606402).
Corresponding Authors:  Chen Li-Qun     E-mail:  ldclqun@163.com

Cite this article: 

Chen Li-Qun (陈丽群), Peng Xiao-Fang (彭小方), Yu Tao (于涛) Energetics and electronic structure of refractory elements in the dislocation of NiAl 2012 Chin. Phys. B 21 087102

[1] Peter L and Raimund P 2009 Intermetallics 17 675
[2] Misra A and Gibala R 2000 Intermetallics 8 1025
[3] Misra A, Wu Z L, Kush M T and Gibala R 1997 Mater. Sci. Eng. A 239-240 75
[4] Ramassundaram P, Bowman R and Soboyejo W 1998 Mater. Sci. Eng. A 248 132
[5] Medvedeva N I, Gornostyrev Yu N, Kontsevoi O Yu and Freeman A J 2004 Acta Materialia 52 675
[6] Ball A and Smallman R E 1966 Acta Metall. 14 1349
[7] Takasugi T, Kishino J and Hanada S 1993 Acta Metall. Mater. 41 1009
[8] Hu J and Lin D L 2008 Mater. Sci. Eng. A 490 157
[9] Yang C 2006 Int. J. Mech. Sci. 48 950
[10] Ghosh B and Crimp M A 1997 Mater. Sci. Eng. A 239-240 142
[11] Ebrahimi F and Shrivastava S 1998 Acta Mater. 46 1493
[12] Pollock T M, Lu D C, Shi X and Eow K 2001 Mater. Sci. Eng. A 317 241
[13] Fu C L and Zou J 1996 Acta Mater. 44 1471
[14] Kontsevoi O Yu, Gornostyrev Yu N, Freeman A J, Katsnelson M I and Trefilov A V 2001 Philos. Mag. Lett. 81 455
[15] Chen L Q and Yu T 2011 Sci. Chin.: Phys. Mech. & Astron. 54 815
[16] Miracle D B 1993 Acta Metall. Mater. 41 649
[17] Wang Y L, Jones I P, and Smallman R E 2006 Intermetallics 14 800
[18] Delley B 1991 J. Chem. Phys. 94 7245
[19] Delley B 1990 J. Chem. Phys. 92 508
[20] Ellis D E and Painter G S 1970 Phys. Rev. B 2 2887
[21] Guenzburger D and Ellis D E 1992 Phys. Rev. B 46 285
[22] Voter A F and Chen S P 1987 High Temperature Ordered Intermetallic Alloys, eds by Siegel R W, Weertman J R and Sundan R MRS Symposia Proceeding No. 82 (Pittsburgh: Materials Research Society) p. 175
[23] Zhang H, Wu H Y, Chen Y Y and Cheng X L 2006 Chin. Phys. 15 428
[24] Zhu T and Wang C Y 2006 Chin. Phys. 15 2089
[25] Chen L Q, Wang C Y and Yu T 2008 Chin. Phys. B 17 662
[26] Chen L Q, Wang C Y and Yu T 2006 J. Appl. Phys. 100 023715
[27] Wang S Y, Wang C Y, Sun J H, Duan W H and Zhao D L 2001 Phys. Rev. B 65 035101
[28] von Barth U and Hedin L 1972 J. Phys. C 5 1629
[29] Yan J A, Wang C Y, Duan W H and Wang S Y 2004 Phys. Rev. B 69 214110
[30] Allaverdova N V, Portnoy V K, Kucherenko L A, Ruban A V and Bogdanov V I 1988 J. Less-Common Metals 141 191
[31] Duncan A J, Kaufman M J, Liu C T and Miller M K 1994 Appl. Surf. Sci. 76-77 155
[32] Bozzolo G, Noebe R D and Honecy F 2000 Intermetallics 8 7
[33] Wang C Y and Zhao D L 1994 Mater. Res. Soc. Symp. Proc. 318 571
[34] Wang C Y 1995 Defect Diffus. Forum 125-126 79
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[6] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[7] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[8] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[9] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[10] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[11] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[12] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[13] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[14] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[15] A theoretical investigation of glide dislocations in BN/AlN heterojunctions
Shujun Zhang(张淑君). Chin. Phys. B, 2022, 31(11): 116101.
No Suggested Reading articles found!