Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084601    DOI: 10.1088/1674-1056/21/8/084601
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Response of thermal source in a transversely isotropic thermoelastic half-space with mass diffusion by finite element method

Ibrahim A. Abbasa b, Rajneesh Kumarc, Vijay Chawlac
a Department of Mathematics, Faculty of Science and Arts -- Khulais, King Abdulaziz University, Jeddah, Saudi Arabia;
b Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt;
c Department of Mathematics, Kurukshetra University, Kurukshetra-136119, Haryana, India
Abstract  The two-dimensional problem of generalized thermoelastic diffusion material with thermal and diffusion relaxation times is investigated in the context of Lord-Shulman theory. As an application of the problem, a particular type of thermal source is considered and the problem is solved numerically by using a finite element method. The components of displacement, stress, temperature distribution, chemical potential, and mass concentration are obtained. The resulting quantities are depicted graphically for a special model. Appreciable effect of relaxation times is observed on various resulting quantities.
Keywords:  thermoelastic diffusion      thermal source      finite element method      relaxation time  
Received:  20 February 2012      Revised:  20 February 2012      Accepted manuscript online: 
PACS:  46.25.Hf (Thermoelasticity and electromagnetic elasticity (electroelasticity, magnetoelasticity))  
  82.56.Lz (Diffusion)  
  87.10.Kn (Finite element calculations)  
Corresponding Authors:  Ibrahim A. Abbas, Rajneesh Kumar     E-mail:  ibrabbas7@yahoo.com; rajneesh kuk@rediffmail.com

Cite this article: 

Ibrahim A. Abbas, Rajneesh Kumar, Vijay Chawla Response of thermal source in a transversely isotropic thermoelastic half-space with mass diffusion by finite element method 2012 Chin. Phys. B 21 084601

[1] Lord H W and Shulman Y 1967 J. Mech. Phys. Solid 15 299
[2] Green A E and Lindsay K A 1972 J. Elasticity 2 1
[3] Hetnarski R B and Ignaczak J 1999 J. Thermal Stresses 22 451
[4] Nowacki W 1974 “Dynamical Problem of Thermodiffusion in Solid-I”, Bulletin of Polish Academy of Sciences Series, Science and Technology 22 pp. 55-64
[5] Nowacki W 1974 “Dynamical Problem of Thermodiffusion in Solid-II”, Bulletin of Polish Academy of Sciences Series, Science and Technology 22 pp. 129-135
[6] Nowacki W 1974 “Dynamial Problem of Thermodiffusion in Solid-III”, Bulletin of Polish Academy of Sciences Series, Science and Technology 22 pp. 275, 276
[7] Nowacki W 1974 “Dynamic Problems of Thermodiffusion in Solids”, Proc. Vib. Prob. 15 pp. 105-128
[8] Dudziak W and Kowalski S J 1989 Int. J. Heat and Mass Transfer 32 2005
[9] Olesiak Z S and Pyryev Y A 1995 Int. J. Eng. Sci. 33 773
[10] Sherief H H, Hamza F and Saleh H 2004 Int. J. Eng. Sci. 42 591
[11] Sherief H H and Saleh H 2005 Int. J. Solid Structure 42 4484
[12] Singh B 2005 J. Earth Syst. Sci. 114 159
[13] Singh B 2006 J. Sound Vib. 291 764
[14] Aouadi M 2006 Angew. Math. Phys. 57 350
[15] Aouadi M 2006 Int. J. Math. Sci. 1 15
[16] Aouadi M 2007 Int. J. Solid Structure 44 5711
[17] Sharma J N 2007 J. Sound Vib. 301 979
[18] Sharma J N, Sharma Y D and Sharma P K 2008 J. Sound Vib. 315 927
[19] Kumar R and Kansal T 2008 Int. J. Solid Structure 45 5890
[20] Kumar R and Chawla V 2011 Int. Commun. Heat Mass Transfer 38 456
[21] Kumar R and Chawla V 2011 Int. Commun. Heat Mass Transfer 38 1262
[22] Abbas I A and Abd-alla A N 2008 Archive Appl. Mech. 78 283
[23] Abbas I A and Othman M I 2009 Int. J. Industr. Math. 1:2 121
[24] Abbas I A and Palani G 2010 Appl. Math. Mech. 31 329
[25] Abbas I A and Abo-Dahab S M 2011 Appl. Math. Modelling 35 3759
[26] Othman M I and Ibrahim A A 2010 Meccanica 46 413
[27] Wriggers P 2008 Nonlinear Finite Element Methods (Berlin: Springer)
[1] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[2] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[3] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[4] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[5] Numerical simulation of acoustic field under mechanical stirring
Jin-He Liu(刘金河), Zhuang-Zhi Shen(沈壮志), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(10): 104302.
[6] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[7] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[8] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[9] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[10] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[11] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[12] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[13] Effect of graphene/ZnO hybrid transparent electrode on characteristics of GaN light-emitting diodes
Jun-Tian Tan(谭竣天), Shu-Fang Zhang(张淑芳), Ming-Can Qian(钱明灿), Hai-Jun Luo(罗海军), Fang Wu(吴芳), Xing-Ming Long(龙兴明), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2018, 27(11): 114401.
[14] Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film
Qi-lin Xiong(熊启林), Xin Tian(田昕). Chin. Phys. B, 2017, 26(9): 096501.
[15] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
No Suggested Reading articles found!