Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 073102    DOI: 10.1088/1674-1056/21/7/073102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Charge density at the nucleus and radial behavior of ground state for lithium-like ions with Z = 21 to 30

Yu Wei-Wei(于伟威)a), Wang Zhi-Wen(王治文)a)b)†, Chen Chao(陈超)c), Cai Juan(蔡娟) b), and Zhang Nan(张楠)b)
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
b School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China;
c School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  By using the full core plus correlation (FCPC) type wave functions, the accurate charge densities ρ (0) at the nucleus and the radial expectation values of the ground states for the lithium-like systems with Z=21 to 30 are obtained. The determinantal conditions and the electron-nucleus cusp condition are used to calculate the inequalities of the upper and the lower bounds to ρ (0) with two or more expectation values. These inequalities derived by Angulo and Dehesa [Phys. Rev. A 44 1516 (1991)] are verified to be valid too for these ions with higher nuclear charge. The present results show that the wave functions used in this paper are satisfactory in the whole configuration space for these ions with higher nuclear charge.
Keywords:  electron density      radial expectation values      upper and lower bounds      full core plus correlation method  
Received:  09 November 2011      Revised:  24 November 2011      Accepted manuscript online: 
PACS:  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  31.15.ac (High-precision calculations for few-electron (or few-body) atomic systems)  
  31.15.ve (Electron correlation calculations for atoms and ions: ground state)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074102).
Corresponding Authors:  Wang Zhi-Wen     E-mail:  zh.w.wang@163.com

Cite this article: 

Yu Wei-Wei(于伟威), Wang Zhi-Wen(王治文), Chen Chao(陈超), Cai Juan(蔡娟), and Zhang Nan(张楠) Charge density at the nucleus and radial behavior of ground state for lithium-like ions with Z = 21 to 30 2012 Chin. Phys. B 21 073102

[1] King F W 1997 J. Mol. Struct. Theochem 400 7
[2] King F W 1999 Adv. At. Mol. Opt. Phys. 40 57
[3] Yan Z C, Nörtershäuser W and Drake 2008 Phys. Rev. Lett. 100 243002
[4] Yan Z C and Drake G W F 2002 Phys. Rev. A 66 042504
[5] Puchalski M, Kedziera D and Pachucki K 2010 Phys. Rev. A 82 062509
[6] Parr R G and Yang W G 1989 Density-Functional Theory of Atoms and Molecules (New York: Oxford University Press)
[7] Lundquist S and March N H 1983 Theory of the Inhomogeneous Electron Gas (New York: Plenum Press)
[8] Angulo J C and Dehesa J S 1991 Phys. Rev. A 44 1516
[9] G醠avez F J and Porras I 1991 Phys. Rev. A 44 144
[10] G醠avez F J and Porras I 1995 Phys. Rev. A 51 2857
[11] King F W and Dressel P R 1989 J. Chem. Phys. 90 6449
[12] King F W 1989 Phys. Rev. A 40 1735
[13] Chung K T 1991 Phys. Rev. A 44 5421
[14] Wang Z W, Zhu X W and Chung K T 1992 Phys. Rev. A 46 6194
[15] Wang Z W, Zhu X W and Chung K T 1992 J. Phys. B 25 3915
[16] Wang Z W, Zhu X W and Chung K T 1993 Physica Scripta 47 65
[17] Ge Z M, Wang Z W, Zhou Y J, He L M and Liu G G 2003 Chin. Phys. 12 488
[18] Hu M H and Wang Z W 2004 Chin. Phys. 13 662
[19] Hu M H and Wang Z W 2004 Chin. Phys. 13 1246
[20] Wang Z W, Yang D, Hu M H, Han Q J and Li J Y 2005 Chin. Phys. 14 1559
[21] Hu M H and Wang Z W 2008 Chin. Phys. B 17 908
[22] Wang Z W, Liu Y, Hu M H, Li X R and Wang Y N 2008 Chin. Phys. B 17 2909
[23] Wang Z W, Wang Y N, Hu M H, Li X R and Liu Y 2008 Science in China G 51 1633
[24] Hu M H and Wang Z W 2009 Chin. Phys. B 18 2244
[25] Wang Z W, Tong B C, Hu M H, Guo Y and Li Y 2009 Science in China G 52 1971
[26] Hu M H, Wang Z W, Zeng F W, Wang T and Wang J 2011 Chin. Phys. B 20 083101
[27] Hoffmann-Ostenhof M, Hoffmann-Ostenhof T and Thirring W 1978 J. Phys. B 11 L571
[28] Shohat J and Tamarkin J D1943 The Problem of Moments (New York: American Mathematical Society Press)
[29] Kato T 1957 Commum. Pure Appl. Math. 10 151
[30] Steiner E 1963 J. Chem. Phys. 39 2365
[31] Cioslowski J 1989 Phys. Rev. A 39 378
[1] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[2] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[3] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[6] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[7] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[8] Temporal and spatial evolution of air-spark switch plasmainvestigated by the Mach-Zehnder interferometer
Jie Huang(黄杰), Lin Yang(杨林), Hongchao Zhang(张宏超), Lei Chen(陈磊), Xianying Wu(吴先映). Chin. Phys. B, 2019, 28(5): 055202.
[9] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[10] Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(5): 053102.
[11] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
[12] Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations
Yuan Ye (袁野), Xu Run (徐闰), Xu Hai-Tao (徐海涛), Hong Feng (洪峰), Xu Fei (徐飞), Wang Lin-Jun (王林军). Chin. Phys. B, 2015, 24(11): 116302.
[13] Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon
Xu Dong-Sheng (徐东升), Zou Shuai (邹帅), Xin Yu (辛煜), Su Xiao-Dong (苏晓东), Wang Xu-Sheng (王栩生). Chin. Phys. B, 2014, 23(6): 065201.
[14] First-principles study of orbital ordering in cubic fluoride KCrF3
Ming Xing (明星), Xiong Liang-Bin (熊良斌), Xu Huo-Xi (徐火希), Du Fei (杜菲), Wang Chun-Zhong (王春忠), Chen Gang (陈岗). Chin. Phys. B, 2014, 23(3): 037401.
[15] Methyl orbital signatures in 2-amino-1-propanol
Wang Ke-Dong(王克栋), Duan Kun-Jie(段坤杰), and Liu Yu-Fang (刘玉芳) . Chin. Phys. B, 2012, 21(7): 073103.
No Suggested Reading articles found!