Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 074206    DOI: 10.1088/1674-1056/21/7/074206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Surface defect gap solitons in two-dimensional optical lattices

Meng Yun-Ji(孟云吉), Liu You-Wen(刘友文), and Tang Yu-Huang(唐宇煌)
Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  We investigate the existence and stability of surface defect gap solitons at an interface between a defect of two-dimensional optical lattice and uniform saturable Kerr nonlinear medium. The surface defect embedded in the two-dimensional optical lattice gives rise to some unique properties. It is interestingly found that for the negative defect, stable surface defect gap solitons can exist both in the semi-infinite gap and in the first gap. The deeper the negative defect, the narrower the stable region in the semi-infinite gap will be. For a positive defect, the surface defect gap solitons exist only in the semi-infinite gap and the stable region localizes in a low power region.
Keywords:  surface defect gap soliton      optical lattice      saturable Kerr nonlinear media  
Received:  28 November 2011      Revised:  07 December 2011      Accepted manuscript online: 
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
  42.65.Wi (Nonlinear waveguides)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174147) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2009366).
Corresponding Authors:  Liu You-Wen     E-mail:  ywliu@nuaa.edu.cn

Cite this article: 

Meng Yun-Ji(孟云吉), Liu You-Wen(刘友文), and Tang Yu-Huang(唐宇煌) Surface defect gap solitons in two-dimensional optical lattices 2012 Chin. Phys. B 21 074206

[1] Yeh P, Yariv A and Cho A Y 1978 Appl. Phys. Lett. 32 104
[2] Shadrivov I V, Sukhorukov A A and Kivshar Y S 2003 Phys. Rev. E 67 057602
[3] Makris K G, Suntsov S, Christodoulides D N, Stegeman G I and Hache A 2005 Opt. Lett. 30 2466
[4] Suntsov S, Makris K G, Christodoulides D N, Stegeman G I, Hache A, Morandotti R, Yang H, Salamo G and Sorel M 2006 Phys. Rev. Lett. 96 063901
[5] Makris K G, Hudock J, Christodoulides D N, Stegeman G I, Manela O and Segev M 2005 Opt. Lett. 30 2466
[6] Kartashov Y V, Vysloukh V A and Torner L 2006 Phys. Rev. Lett. 96 073901
[7] Rosberg C R, Neshev D N, Krolikowski W, Mitchell A, Vicencio R A, Molina M I and Kivshar Y S 2006 Phys. Rev. Lett. 97 083901
[8] Szameit A, Kartashov Y V, Dreisow F, Persch T, Nolte S, T黱nermann A and Torner L 2007 Phys. Rev. Lett. 98 173903
[9] Wang X, Bezryadina A, Chen Z, Makris K G, Christodoulides D N and Stegeman G I 2007 Phys. Rev. Lett. 98 123903
[10] Szameit A, Kartashov Y V, Dreisow F, Heinrich M, Vysloukh V A, Persch T, Nolte S, T黱nermann A, Lederer F and Torner L 2008 Opt. Lett. 33 663
[11] Alfassi B, Rotschild C, Manela O, Segev M and Christodoulides D N 2007 Phys. Rev. Lett. 98 213901
[12] Huang H C, He Y J and Wang H Z 2009 Chin. Phys. B 18 4919
[13] Fedele F, Yang J and Chen Z 2005 Opt. Lett. 30 1506
[14] Yang J and Chen Z 2006 Phys. Rev. E 73 026609
[15] Wang J, Yang J and Chen Z 2007 Phys. Rev. A 76 013828
[16] Chen W, Zhu X, Wu T and Li R 2010 Opt. Express 18 10956
[17] Zhu X, Wang H and Zheng L 2010 Opt. Express 18 20786
[18] Dong L and Ye F 2010 Phys. Rev. A 82 053829
[19] Yang X Y, Zheng J B and Dong L W 2011 Chin. Phys. B 20 034208
[20] Wang X, Young J, Chen Z, Weinstein D and Yang J 2006 Opt. Express 14 7362
[21] Makasyuk I, Chen Z and Yang J 2006 Phys. Rev. Lett. 96 223903
[22] Szameit A, Kartashov Y V, Heinrich M, Dreisow F, Persch T, Nolte T S, T黱nermann A, Lederer F, Vysloukh V A and Torner L 2009 Opt. Lett. 34 797
[23] Chen W, He Y, and Wang H 2006 Opt. Express 14 11271
[24] Zhu W, Luo L, He Y and Wang H 2009 Chin. Phys. B 18 4319
[25] Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature 422 147
[26] Yang J and Lakoba T I 2007 Stud. Appl. Math. 118 153
[27] Yang J 2008 J. Comput. Phys. 227 6862
[28] Vakhitov M G and Kolokolov A A 1973 Sov. J. Radiophys. Quantum. Electron. 16 783
[29] Yang J 2004 New. J. Phys. 6 47
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[7] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[8] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[9] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[10] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[11] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[12] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[13] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[14] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
[15] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
No Suggested Reading articles found!