Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 074211    DOI: 10.1088/1674-1056/21/7/074211
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical planar waveguides in Yb3+-doped phosphate glasses produced by He+ ion implantation

Liu Chun-Xiao(刘春晓)a)b), Li Wei-Nan(李玮楠)a), Wei Wei(韦玮)a)c), and Peng Bo(彭波)a)c)
a State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
b School of Electronic and Information Engineering, Hefei Normal University, Hefei 230601, China;
c Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210046, China
Abstract  Optical planar waveguides in Yb3+-doped phosphate glasses are fabricated by implanting triple-energy helium ions. The guiding modes and the near-field intensity distribution are measured by using the prism-coupling method and the end-face coupling setup with a He--Ne laser at 633 nm, respectively. The intensity calculation method (ICM) is used to reconstruct the refractive index profile of the waveguide. The absorption and the fluorescence investigations reveal that the glass bulk features are well preserved in the active volumes of the waveguides, suggesting the fabricated structures for possible applications as waveguide lasers.
Keywords:  waveguide      ion implantation      laser materials      photoluminescence  
Received:  08 September 2011      Revised:  08 October 2011      Accepted manuscript online: 
PACS:  42.79.Gn (Optical waveguides and couplers)  
  61.80.Jh (Ion radiation effects)  
  61.43.Fs (Glasses)  
Corresponding Authors:  Wei Wei, Peng Bo     E-mail:  weiwei@opt.ac.cn;bpeng@opt.ac.cn

Cite this article: 

Liu Chun-Xiao(刘春晓), Li Wei-Nan(李玮楠), Wei Wei(韦玮), and Peng Bo(彭波) Optical planar waveguides in Yb3+-doped phosphate glasses produced by He+ ion implantation 2012 Chin. Phys. B 21 074211

[1] Jiang C, Liu H, Zeng Q J, Tang X D and Gan F X 2000 J. Phys. Chem. Sol. 61 1217
[2] Petrov V, Griebner U, Ehrt D and Seeber W 1997 Opt. Lett. 22 408
[3] Boulon G 2008 J. Alloys Compd. 451 1
[4] Veasey D L, Funk D S, Peters P M, Sanford N A, Obarski G E, Fontaine N, Young M, Peskin A P, Liu W C, Houde-Walter S N and Hayden J S 2000 J. Non-Cryst. Solids 263 & 264 369
[5] Zhou W L, Zhang Q L, Gao J Y, Liu W P, Ding L H and Yin S T 2011 Chin. Phys. B 20 016101
[6] Kip D 1998 Appl. Phys. B 67 131
[7] Stegeman G I and Seaton C T 1985 J. Appl. Phys. 58 R57
[8] Wang X L, Chen F, Lu F, Fu G, Li S L, Wang K M, Zhang H J, Shen D Y, Ma H J and Nie R 2004 Chin. Phys. Lett. 21 867
[9] Jiang Y, Wang K M, Chen F, Wang X L, Jia C L, Wang L, Shen D Y, Ma H J and Nie R 2006 Chin. Phys. Lett. 23 922
[10] Mackenzie J I 2007 IEEE J. Sel. Top. Quantum Electron. 13 626
[11] Shao G W and Jin G L 2009 Chin. Phys. B 18 1096
[12] Valle G D, Osellame R, Chiodo N, Taccheo S, Cerullo G, Laporta P, Killi A, Morgner U, Lederer M and Kopf D 2005 Opt. Express 13 5976
[13] Chan J W, Huser T R, Risbud S H, Hayden J S and Krol D M 2003 Appl. Phys. Lett. 82 2371
[14] Berneschi S, Nunzi Contil G, Banyasz I, Watterich A, Khanh N Q, Fried M, Paszti F, Brenci M, Pelli S and Righini G C 2007 Appl. Phys. Lett. 90 121136
[15] Chen F, Wang X L and Wang K M 2007 Opt. Mater. 29 1523
[16] Chen F, Wang X L, Li X S, Hu L L, Lu Q M, Wang K M, Shi B R and Shen D Y 2002 Appl. Surf. Sci. 193 92
[17] Tan Y, Chen F, Hu L L, Xing P F, Chen Y X, Wang X L and Wang K M 2007 J. Phys. D: Appl. Phys. 40 6545
[18] Regener R and Sohler W 1985 Appl. Phys. B 36 143
[19] Biesack J P 2011 SRIM, http://www.srim.org}
[20] Qin X F, Chen M, Wang X L, Liang Y and Zhang S M 2010 Chin. Phys. B 19 113403
[21] Chen F 2009 J. Appl. Phys. 106 081101
[22] Domenech M, V醶quez G V, Flores-Romero E, Cantelar E and Lifante G 2005 Appl. Phys. Lett. 86 151108
[23] Liu X Z, Lu F, Chen F, Tan Y, Zhang R, Liu H, Wang L and Wang L L 2008 Opt. Commun. 281 1529
[24] Tan N and Zhang Q Y 2006 Chin. Phys. 15 2165
[25] Silva W F, Jacinto C, Benayas A, de Aldana J R, Torchia G A, Chen F, Tan Y and Jaque D 2010 Opt. Lett. 35 916
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[8] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[9] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[10] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[11] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[12] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[13] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[14] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[15] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
No Suggested Reading articles found!