Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 114401    DOI: 10.1088/1674-1056/26/11/114401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation

Wen-Kai Zhen(甄文开)1, Zi-Zhen Lin(蔺子甄)1, Cong-Liang Huang(黄丛亮)1,2
1. School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China;
2. Department of Mechanical Engineering, University of Colorado, Colorado 80309-0427, USA
Abstract  The effect of nanoparticle aggregation on the thermal conductivity of nanocomposites or nanofluids is typically non-negligible. A universal model (Maxwell model) including nanoparticle aggregation is modified in order to predict the thermal conductivity of nanocomposites more accurately. The predicted thermal conductivities of silica and titania nanoparticle powders are compared first with that measured by a hot-wire method and then with those in previous experimental works. The results show that there is good agreement between our model and experiments, and that nanoparticle aggregation in a nanocomposite enhances the thermal conductivity greatly and should not be ignored. Because it considers the effect of aggregation, our model is expected to yield precise predictions of the thermal conductivity of composites.
Keywords:  thermal conductivity      nanocomposite      aggregation      titania  
Received:  05 May 2017      Revised:  12 June 2017      Accepted manuscript online: 
PACS:  44.30.+v (Heat flow in porous media)  
  44.35.+c (Heat flow in multiphase systems)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS062).
Corresponding Authors:  Cong-Liang Huang     E-mail:  huang198564@gmail.com

Cite this article: 

Wen-Kai Zhen(甄文开), Zi-Zhen Lin(蔺子甄), Cong-Liang Huang(黄丛亮) Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation 2017 Chin. Phys. B 26 114401

[1] Tang J, Wang H T, Lee D H, Fardy M, Huo H Z, Russell T P and Yang P 2010 Nano Lett. 10 4279
[2] Lin Z Z, Huang C L and Huang Z 2017 J. Nanosci. Nanotechnol. 17 1
[3] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[4] Lin Z Z, Huang C L, Zhen W K, Feng Y H, Zhang X X and Wang G 2017 Nanoscale Res. Lett. 12 189
[5] Liu H, Li Z Y, Zhao X P and Tao W Q 2015 J. Nanosci. Nanotechnol. 15 3218
[6] Huang C L, Lin Z Z, Feng Y H, Zhang X X and Wang G 2015 Eur. Phys. J. Plus 130 239
[7] Li Z Y, Liu H, Zhao X P, and Tao W Q 2015 J. Non-Cryst. Solids 430 43
[8] Feng D L, Feng Y H and Shi J 2016 Acta Phys. Sin. 65 244401(in Chinese)
[9] Liu H, Li Z Y, Zhao X P and Tao W Q 2016 Int. J. Heat Mass Transfer 95 1026
[10] Zhang C B, Shen C Q and Chen Y P 2017 Int. J. Heat Mass Transfer 104 1135
[11] Yu W and Xie H 2011 J. Nanomater. 2012 435873
[12] Kulwinder K and Ranjan K 2016 Chin. Phys. B 25 056401
[13] Yu W, Xie H, Yin L, Zhao J, Xia L and Chen L 2015 Int. J. Therm. Sci. 91 76
[14] Rayleigh L 1976 Philos. Mag. 34 481
[15] Prasher R S and Phelan P E 1999 J. Heat Transfer 123 105
[16] Lotfizadeh S and Matsoukas T 2015 J. Nanopart. Res. 17 1
[17] Eapen J, Rusconi R, Piazza R and Yip S 2010 J. Heat Transfer 132 369
[18] Progelhof R C 1976 Polym. Eng. Sci. 16 615
[19] Choi C J and Roberts N 2016 Int. J. Therm. Sci. 104 13
[20] Siddiqui M U and Arif A F M 2016 Materials 9 694
[21] Huang C L, Feng Y H, Zhang X X and Wang G 2014 Eur. Phys. J. Appl. Phys. 66 67
[22] LotfizadehS and Desa T 2014 APL Mater. 2 066102
[23] Huang C L, Qian X and Yang R G 2017 EPL 117 24001
[24] Wang B X, Wang Zhou L P and Peng X F 2003 Int. J. Heat Mass Transfer 46 2665
[25] Li X, Park W, Chen Y P and Ruan X L 2017 J. Heat Transfer 139 022401
[26] Lin Z Z, Huang C L, Zhen W K and Huang Z 2017 Appl. Therm. Eng. 119 425
[27] Huai X L, Tao Y J and Wang W W 2006 Chin. Phys. Lett. 23 1511
[28] Xuan Y M and Li Q 2000 Int. J. Heat Fluid Fl. 21 58
[29] Zhao D L, Qian X, Gu X K, Jajia S A and Yang R G 2016 J. Electronic Packaging 138 040802
[30] Huang C L, Feng Y H, Zhang X X, Li J, Wang G and Chou A H 2013 Acta Phys. Sin. 63 026501(in Chinese)
[31] Ordonez-MirandaJ, Yang R G and Alvarado-GilJ J 2011 Appl. Phys. Lett. 98 233111
[32] Dornhaus R, Nimtz P D G and Richter W 1976 Solid-State Physics (Germany:Springer Verlag)
[33] Jiang W T, Ding G L, Peng H, Gao Y F and Wang K J 2009 HVAC & R Res. 15 651
[34] Hwng Y J and Ahn Y C 2006 Curr. Appl. Phys. 6 1068
[35] Machrafi H, Lebon G and Iorio C S 2016 Compos Sci. Technol. 130 78
[36] Lee S and Choi S 1999 J. Heat Trans.-T ASME 121 280
[37] Sim L C and Ramanan S R 2005 Thermochim. Acta 430 155
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[5] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[6] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[7] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[8] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[9] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[10] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[11] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[12] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[13] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[14] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[15] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
No Suggested Reading articles found!