1. School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; 2. Department of Mechanical Engineering, University of Colorado, Colorado 80309-0427, USA
Abstract The effect of nanoparticle aggregation on the thermal conductivity of nanocomposites or nanofluids is typically non-negligible. A universal model (Maxwell model) including nanoparticle aggregation is modified in order to predict the thermal conductivity of nanocomposites more accurately. The predicted thermal conductivities of silica and titania nanoparticle powders are compared first with that measured by a hot-wire method and then with those in previous experimental works. The results show that there is good agreement between our model and experiments, and that nanoparticle aggregation in a nanocomposite enhances the thermal conductivity greatly and should not be ignored. Because it considers the effect of aggregation, our model is expected to yield precise predictions of the thermal conductivity of composites.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.