Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 060402    DOI: 10.1088/1674-1056/21/6/060402
GENERAL Prev   Next  

Gravitational waves from the axial perturbations of hyperon stars

Wen De-Hua(文德华), Yan Jing(燕晶), and Liu Xue-Mei(刘雪梅)
Department of Physics, South China University of Technology, Guangzhou 510641, China
Abstract  The eigen-frequencies of the axial w-mode oscillations of hyperon stars are examined. It is shown that as the appearance of hyperons softens the equation of state of the super-density matter, the frequency of gravitational waves from the axial w-mode of hyperon star becomes smaller than that of a traditional neutron star at the same stellar mass. Moreover, the eigenfrequencies of hyperon stars also have scaling universality. It is shown that the EURO third-generation gravitational-wave detector has the potential to detect the gravitational-wave signal emitted from the axial w-mode oscillations of a hyperon star.
Keywords:  hyperon star      oscillation      gravitational wave  
Received:  23 November 2011      Revised:  31 December 2011      Accepted manuscript online: 
PACS:  04.40.Dg (Relativistic stars: structure, stability, and oscillations)  
  97.60.Jd (Neutron stars)  
  04.30.-w (Gravitational waves)  
  26.60.-c (Nuclear matter aspects of neutron stars)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10947023) and the Fundamental Research Funds for the Central Universities (Grant No. 2012ZZ0079).
Corresponding Authors:  Wen De-Hua     E-mail:  wendehua@scut.edu.cn

Cite this article: 

Wen De-Hua(文德华), Yan Jing(燕晶), and Liu Xue-Mei(刘雪梅) Gravitational waves from the axial perturbations of hyperon stars 2012 Chin. Phys. B 21 060402

[1] Abbott B et al. [LIGO Scientific Collaboration (LSC)] 2005 Phys. Rev. Lett. 94 181103
[2] Acernese F et al. 2007 Class. Quantum Grav. 24 S491
[3] Abbott B et al. (LSC) 2004 Nucl. Instrum. Method Phys. Res. A 517 154
[4] Thorne K S and Campolattaro A 1967 ApJ 149 591
[5] Lindblom L and Detweiler S 1983 ApJS 53 73
[6] Benhar O, Berti E and Ferrari V 1999 MNRAS 310 797
[7] Kokkotas K D, Apostolatos T A and Andersson N 2001 MNRAS 320 307
[8] Chandrasekhar S andFerrari V 1991 Proc. R. Soc. Lond. A 432 247
[9] Chandrasekhar S andFerrari V 1991 Proc. R. Soc. Lond. A 434 449
[10] Kokkotas K D 1994 MNRAS 268 1015
[11] Tsui L K and Leung P T 2005 MNRAS 357 1029
[12] Tsui L K and Leung P T 2005 ApJ 631 495
[13] Wen D H, Li B A and Krastev P G 2009 Phys. Rev. C 80 025801
[14] Wen D H, Fu H Y and Chen W 2011 Chin. Phys. B 20 060402
[15] Glendenning N K 1989 Nucl. Phys. A 493 521
[16] Glendenning N K and Moszkowski S A 1991 Phys. Rev. Lett. 67 2414
[17] Broderick A, Prakash M and Lattimer J M 2002 Phys. Lett. B 531 167
[18] Burgio G, Li A, Mi A J and Zuo W 2007 Chin. Phys. 16 1934
[19] Li A, Mi A and Zuo W 2007 Chin. Phys. 16 3290
[20] Wen D H and Chen W 2011 Chin. Phys. B 20 029701
[21] Glendenning N K 2001 Phys. Rev. C 64 025801
[22] Shen H 2002 Phys. Rev. C 65 035802
[23] Panda P K, Menezes D P and Providencia C 2004 Phys. Rev. C 69 025207
[24] Lackey B D, Nayyar M and Owen B J 2006 Phys. Rev. D 73 024021
[25] Yue P, Yang F and Shen H 2009 Phys. Rev. C 79 025803
[26] Akmal A, Pandharipande V R and Ravenhall D G 1998 Phys. Rev. C 58 1804
[27] Walecka J D 1974 Ann. Phys. 83 491
[28] Schaffner J and Mishustin I 1996 Phys. Rev. C 53 1416
[29] Chen W, Ai B Q and Liu L G 2001 Commun. Theor. Phys. 36 183
[30] Pethick C J, Ravenhall D G and Lorenz C P 1995 Nucl. Phys. A 584 675
[31] Haensel P and Pichon B 1994 Astron. Astrophys. 283 313
[32] Andersson N and Kokkotas K D 1998 MNRAS 299 1059
[33] Benhar O, Ferrari V and Gualtieri L 2004 Phys. Rev. D 70 124015
[34] Tsui L K, Leung P T and Wu J 2006 Phys. Rev. D 74 124025
[35] EURO homepage http://www.astro.cf.ac.uk/geo/euro
[36] Andersson N and Comer G L 2001 Phys. Rev. Lett. 87 241101
[1] Estimation of far-field wavefront error of tilt-to-length distortion coupling in space-based gravitational wave detection
Ya-Zheng Tao(陶雅正), Hong-Bo Jin(金洪波), and Yue-Liang Wu(吴岳良). Chin. Phys. B, 2023, 32(2): 024212.
[2] Improved functional-weight approach to oscillatory patterns in excitable networks
Tao Li(李涛), Lin Yan(严霖), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2022, 31(9): 090502.
[3] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[4] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[5] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[6] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[7] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[8] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[9] Pattern transition and regulation in a subthalamopallidal network under electromagnetic effect
Zilu Cao(曹子露), Lin Du(都琳), Honghui Zhang(张红慧), Yuzhi Zhao(赵玉枝), Zhuan Shen(申转), and Zichen Deng(邓子辰). Chin. Phys. B, 2022, 31(11): 118701.
[10] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[11] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[12] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[13] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[14] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[15] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
No Suggested Reading articles found!