Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057401    DOI: 10.1088/1674-1056/21/5/057401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Vortex lines in a ferromagnetic spin-triplet superconductor

Zhao Li(赵力)a)†, Yang Jie(杨捷) a), Xie Qun-Ying(谢群英)a)b), Tian Miao(田苗)c), and Duan Yi-Shi(段一士) a)
a. Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China;
b. School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China;
c. School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
Abstract  Based on Duan's topological current theory, we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines. Such defects are different from the Abrikosov vortices in one-component condensate systems. We investigate the inner topological structure of the vortex lines. The topological charge density, velocity, and topological current of the vortex lines can all be expressed in terms of $\delta$ function, which indicates that the vortices can only arise from the zero points of an order parameter field. The topological charges of vortex lines are quantized in terms of the Hopf indices and Brouwer degrees of $\phi$-mapping. The divergence of the self-induced magnetic field can be rigorously determined by the corresponding order parameter fields and its expression also takes the form of a $\delta$ -like function. Finally, based on the implicit function theorem and the Taylor expansion, we conduct detailed studies on the bifurcation of vortex topological current and find different directions of the bifurcation.
Keywords:  vortex lines      spin-triplet superconductor      topological current      bifurcation  
Received:  02 September 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  74.20.-z (Theories and models of superconducting state)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  02.40.Pc (General topology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10905026 and 10905027), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090211120030), and the Lanzhou Development of Science and Technology Program, China (Grant No. 2010-1-129).

Cite this article: 

Zhao Li(赵力), Yang Jie(杨捷), Xie Qun-Ying(谢群英), Tian Miao(田苗), and Duan Yi-Shi(段一士) Vortex lines in a ferromagnetic spin-triplet superconductor 2012 Chin. Phys. B 21 057401

[1] Niemi A J 2000 Phys. Rev. D 61 125006
[2] Kibble T W B 1976 J. Phys. A 9 1387
[3] Nelson D R and Toner J T 1981 Phys. Rev. B 24 363
[4] Chen K, You Y X, Hu T Q, Zhu M H and Wang X Q 2011 Acta Phys. Sin. 60 024702 (in Chinese)
[5] Lukyanchuk I A and Zhitomirsky M E 1995 Sup. Rev. 1 207
[6] Volovik G E 2003 The Universe in a Helium Droplet (Oxford:Clarendon Press)
[7] Volovik G E and Gor'kov L P 1984 Sov. Phys. JETP Lett. 39 647
[8] Joynt R, Mineev V P, Volovik E G and Zhitomirsky M E 1990 Phys. Rev. B 42 2014
[9] Zha G Q and Zhou S P 2010 Chin. Phys. B 19 027401
[10] Mineev V P and Samokhin K V 1999 Introduction to Unconventional Superconductivity (Amsterdam:Gordon and Breach Science Publisher)
[11] Yu H L, Peng J and Jin B X 2010 Chin. Phys. B 19 087203
[12] Korshunov S 1985 Sov. Phys. JETP 62 301
[13] Stein D L and Cross M C 1979 Phys. Rev. Lett. 42 504
[14] Demler E and Zhou F 2002 Phys. Rev. Lett. 88 163001
[15] Demler E, Nayak C and Das Sarma S 2001 Phys. Rev. Lett. 86 1853
[16] Tou H, Kitaoka Y, Ishida K, Asayama K, Kimura N, Onuki Y, Yamamoto E, Haga Y and Maezawa K 1998 Phys. Rev. Lett. 80 3129
[17] Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y and Maeno Y 1998 Nature 396 658
[18] Knigavko A and Rosenstein B 1999 Phys. Rev. Lett. 82 1261
[19] Pechenik E, Rosenstein B, Shapiro B Y and Shapiro I 2002 Phys. Rev. B 65 214532
[20] Tokuyasu T A, Hess D W and Sauls J A 1990 Phys. Rev. B 41 8891.
[21] Al Khawaja U and Stoof H 2001 Nature 411 918
[22] Mizushima T, Machida K and Kita T 2002 Phys. Rev. Lett. 89 030401
[23] Leonhardt V and Volovik G E 2000 JETP Lett. 72 46
[24] Babaev E 2002 Phys. Rev. Lett. 88 177002
[25] Faddeev L 1979 Einstein and Several Contemporary Tendencies in the Field Theory of Elementary Particles, Relativity, Quanta and Cosmology Vol. 1 (New York:Johnson Reprint Corporation)
[26] Babaev E, Faddeev L D and Niemi A J 2002 Phys. Rev. B 65 100512
[27] Ho T L 1998 Phys. Rev. Lett. 81 742
[28] Mermin N D 1979 Rev. Mod. Phys. 51 591
[29] Mäkelä H, Zhang Y and Suominen K A 2003 J. Phys. A 36 8555
[30] Sornborger A, Carroll S M and Pyne T 1997 Phys. Rev. D 55 6454
[31] Duan Y S 1984 The Structure of the Topological Current (No. SlAC-PUB-3301)
[32] Duan Y S, Zhao L and Zhang X H 2006 Phys. Lett. A 360 183
[33] Wu T T and Yang C N 1975 Phys. Rev. D 12 3845
[34] Duan Y S and Ge M L 1979 Sci. Sin. 11 1072
[35] Ren J R, Mo S F and Zhu T 2009 Chin. Phys. B 18 2901
[36] Duan Y S, Fu L B and Jia G 2000 J. Math. Phys. 41 4379
[37] Goursat É 1904 A Course in Mathematical Analysis (New York:Dover Publications)
[38] Schouten J A 1951 Tensor Analysis for Physicists (Oxford:Clarendon Press)
[39] Duan Y S and Zhang H 1999 Eur. Phys. J. D 5 47
[40] Duan Y S, Wang J P, Liu X and Zhang P M 2003 Prog. Theor. Phys. 110 1
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[4] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[5] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[6] Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Zong-Qiang Ma(马宗强), De-Jun Sun(孙德军), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 090201.
[7] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[8] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[9] Enhance sensitivity to illumination and synchronization in light-dependent neurons
Ying Xie(谢盈), Zhao Yao(姚昭), Xikui Hu(胡锡奎), and Jun Ma(马军). Chin. Phys. B, 2021, 30(12): 120510.
[10] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[11] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[12] Transition to chaos in lid-driven square cavity flow
Tao Wang(王涛) and Tiegang Liu(刘铁钢). Chin. Phys. B, 2021, 30(12): 120508.
[13] Control of firing activities in thermosensitive neuron by activating excitatory autapse
Ying Xu(徐莹) and Jun Ma(马军). Chin. Phys. B, 2021, 30(10): 100501.
[14] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
[15] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
No Suggested Reading articles found!