Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 056801    DOI: 10.1088/1674-1056/21/5/056801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Stabilization variation of organic conductor surfaces induced by $\pi$-$\pi$ stacking interactions

Dou Rui-Fen(窦瑞芬)a), Lin Feng(林峰)b), Liu Fu-Wei(刘富伟)a), Sun Yi(孙祎)a), Yang Ji-Yong(杨继勇)a), Lin Bing-Fa(林炳发)a), He Lin(何林)a), Xiong Chang-Min(熊昌民)a), and Nie Jia-Cai(聂家财)a)†
a. Department of Physics, Beijing Normal University, Beijing 100875, China;
b. School of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871, China
Abstract  The structures and stabilization of three crystal surfaces of TCNQ-based charge transfer complexes (CTCs) including PrQ(TCNQ)2, MPM(TCNQ)2, and MEM(TCNQ)2, have been investigated by scanning tunneling microscopy (STM). The three bulk-truncated surfaces are all ac-surface, which are terminated with TCNQ molecular arrays. On the ac-surface of PrQ(TCNQ)2, the TCNQ molecules form a tetramer structure with a wavelike row behavior and a $\gamma$ angle of about 18° between adjacent molecules. Moreover, the dimer structures are resolved on both ac-surfaces of MPM(TCNQ)2 and MEM(TCNQ)2. In addition, the tetramer structure is the most stable structure, while the dimer structures are unstable and easily subject to the STM tip disturbance, which results in changeable unit cells. The main reasons for the surface stabilization variation among the three ac-surfaces are provided by using the '$\pi$-atom model'.
Keywords:  charge transfer complex (CTC)      scanning tunneling microscopy (STM)      π--&pi      stacking interaction      stabilization  
Received:  27 December 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  82.45.Jn (Surface structure, reactivity and catalysis)  
  82.75.Fq (Synthesis, structure determination, structure modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804010, 50772015, 60977015, and 10974019), the National Basic Research Program of China (Grant No. 2006CB932301), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education.

Cite this article: 

Dou Rui-Fen(窦瑞芬), Lin Feng(林峰), Liu Fu-Wei(刘富伟), Sun Yi(孙祎), Yang Ji-Yong(杨继勇), Lin Bing-Fa(林炳发), He Lin(何林), Xiong Chang-Min(熊昌民), and Nie Jia-Cai(聂家财) Stabilization variation of organic conductor surfaces induced by $\pi$-$\pi$ stacking interactions 2012 Chin. Phys. B 21 056801

[1] Koch N, Duhm S, Rabe J P, Vollmer A and Johnson R L 2005 Phys. Rev. Lett. 95 237601
[2] Jaeckel F, Watson M D, Muellen K and Rabe J P 2004 Phys. Rev. Lett. 92 188303
[3] Muller R, Naulaerts R, Billen J, Genoe J and Heremans P 2007 Appl. Phys. Lett. 90 063503
[4] Rath A K, Dhara K, Banerjee P and Pal A J 2008 Langmuir 24 5937
[5] Chollet M, Guerin L, Uchida N, Fukaya S, Shimoda H, Ishikawa T, Matsuda K, Hasegawa T, Ota A, Yamochi H, Saito G, Tazaki R, Adachi S and Koshihara S 2005 Science 30 86
[6] Narymbetov B, Omerzu A, Kabanov V V, Tokumoto M, Kobayashi H and Mihailovic D 2000 Nature 407 883
[7] Blundell S J and Pratt F L 2004 J. Phys. Condens. Matter 16 R771
[8] Liu Y, Ji Z Y, Tang Q X, Jiang L, Li H X, He M, Hu W P, Zhang D Q, Wang X K, Wang C, Liu Y Q and Zhu D B 2005 Adv. Mater. 17 2953
[9] Ouyang C, Guo Y B, Liu H B, Zhao Y J, Li G X, Li Y J, Song Y L and Li Y L 2009 J. Phys. Chem. C 113 7044
[10] Reda T, Collings A F, Barton C and Lukins P 2003 J. Phys. Chem. B 107 13774
[11] Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T and Leo K 2001 Appl. Phys. Lett. 78 410
[12] O'Mullane A P, Fay N, Nafady A and Bond A M 2007 J. Am. Chem. Soc. 129 2066
[13] Jaeckel F, Perera U G E, Iancu V, Braun K F, Koch N, Rabe J P and Hla S W 2008 Phys. Rev. Lett. 100 126102
[14] Shibaeva R P and Yagubskii E B 2004 Chem. Rev. 104 5347
[15] Horiuchi S, Okimoto Y, Kumai R and Tokura Y 2003 Science 299 229
[16] Cui S, Li Y, Guo Y, Liu H, Song Y, Xu J, Lü J, Zhu M and Zhu D B 2008 Adv. Mater. 20 309
[17] Dvorak M A, Li S L and Ward M D 1994 Chem. Mater. 6 1386
[18] Quivy A, Deltour R, Bentum P J M, Gerritsen J W, Jansen A G M and Wyder P 1995 Surf. Sci. 325 185
[19] Li S L, White H S and Ward M D 1992 Chem. Mater. 4 1082
[20] Huang X M, Lin F, Zhou W, Ren L, Peng H and Liu Z F 2008 J. Phys. Chem. C 112 2004
[21] Lin F, Zhou W, Huang X M, Ren L and Liu Z F 2008 J. Phys. Chem. C 112 1090
[22] Peng H L and Liu Z F 2010 Coord. Chem. Rev. 254 1151
[23] Saenger W 1984 Principles of Nucleic Acid Structure (New York:Pringer-Verlag) p. 261
[24] McGarughey G B, Gagne M and Rappe A K 1998 J. Bio. Chem. 273 15458
[25] Dou R F, Ma X C, Xi L, Yip X L, Wong K Y, Lau W M, Jia J F, Xue Q K, Yang W S, Ma H and Jen A K Y 2006 Langmuir 22 3049
[26] Dou R F, Ma X C, Xi L, Yip X L, Wong K Y, Lau W M, Fan X L, Jia J F, Xue Q K, Yang W S, Ma H and Jen A K Y 2008 J. Phys:Condens. Matter 20 315017
[27] Hunter C A and Sanders J K M 1990 J. Am. Chem. Soc. 112 5525
[28] Melby L R, Harder R J, Hertler W R, Mahler W, Benson R E and Mochel W E 1962 J. Am. Chem. Soc. 84 3374
[29] Herbstein F H 2005 Crystalline Molecular Complexes and Compounds:Structures and Principles (Oxford:Oxford University Press)
[30] Filhol A and Thomas M 1984 Acta Cryst. Sect. B 40 44
[31] Lee N K, Park S and Kim S K 2000 J. Chem. Phys. 116 7902
[32] Lee N K, Park S and Kim S K 2000 J. Chem. Phys. 116 7910
[33] Visser B R J J, De B J L and Vos A 1990 Acta Cryst. Sect. C 46 857
[34] Bosch A and Van Bodegom B 1977 Acta Cryst. Sect. B 33 3013
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[3] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[4] Dynamic stabilization of atomic ionization in a high-frequency laser field with different initial angular momenta
Di-Yu Zhang(张頔玉), Yue Qiao(乔月), Wen-Di Lan(蓝文迪), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军), and Da-Jun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103202.
[5] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[6] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[7] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[8] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[9] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[10] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
[11] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[12] Stable continuous-wave single-frequency intracavity frequency-doubled laser with intensity noise suppressed in audio frequency region
Ying-Hao Gao(高英豪), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2019, 28(9): 094204.
[13] Non-crossover sub-Doppler DAVLL in selective reflection scheme
Lin-Jie Zhang(张临杰), Hao Zhang(张好), Yan-Ting Zhao(赵延霆), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2019, 28(8): 084211.
[14] Epitaxial fabrication of two-dimensional TiTe2 monolayer on Au(111) substrate with Te as buffer layer
Zhipeng Song(宋志朋), Bao Lei(雷宝), Yun Cao(曹云), Jing Qi(戚竞), Hao Peng(彭浩), Qin Wang(汪琴), Li Huang(黄立), Hongliang Lu(路红亮), Xiao Lin(林晓), Ye-Liang Wang(王业亮), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2019, 28(5): 056801.
[15] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
No Suggested Reading articles found!