Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057101    DOI: 10.1088/1674-1056/21/5/057101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Sudden birth and sudden death of thermal fidelity in a two-qubit system

Qin Li-Guo(秦立国)a), Tian Li-Jun(田立君) a)†, Jiang Ying(姜颖)a), and Zhang Hong-Biao(张宏标)b)
a. Department of Physics, Shanghai University, Shanghai 200444, China;
b. Institute of Theoretical Physics, Northeast Normal University, Changchun 130024, China
Abstract  We study the energy level crossing and the thermal fidelity in a two-qubit system with the presence of a transverse inhomogeneous magnetic field. With the help of contour plots, we clearly identify the ground states of the system in different regions of parameter space, and discuss the corresponding energy level crossing. The fidelity between the ground state of the system and the state of the system at temperature T is calculated. The result shows that the fidelity is very sensitive to the magnetic field anisotropic factor, indicating that this factor may be used as a controller of the fidelity. The influence of the Yangian transition operators on the fidelity of the system is discussed. We find that the Yangian operators can change the fidelity dramatically and give rise to sudden birth and sudden death phenomena of the thermal fidelity. This makes the corresponding Yangian operators possible candidates for switchers to turn the fidelity on and off.
Keywords:  the ground state      energy level crossing      fidelity      Yangian  
Received:  24 October 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  71.10.Hf (Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems)  
  32.80.Xx (Level crossing and optical pumping)  
  03.67.-a (Quantum information)  
  02.20.-a (Group theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11075101), the Science & Technology Committee of Shanghai Municipality, China (Grant Nos. 08dj1400202 and 09PJ1404700), the Training Fund of NENU's Scientific Innvovation Project, China (Grant No. NENU-STC08018), and the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20093108110004).

Cite this article: 

Qin Li-Guo(秦立国), Tian Li-Jun(田立君), Jiang Ying(姜颖), and Zhang Hong-Biao(张宏标) Sudden birth and sudden death of thermal fidelity in a two-qubit system 2012 Chin. Phys. B 21 057101

[1] Oh S, Huang Z, Peskin U and Kais S 2008 Phys. Rev. A 78 062106
[2] Vojta M 2003 Rep. Prog. Phys. 66 2069
[3] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472
[4] Bhattacharya M and Raman C 2006 Phys. Rev. Lett. 97 140405
[5] Bhattacharya M and Raman C 2007 Phys. Rev. A 75 033406
[6] Zanardi P and Paunkovic N 2006 Phys. Rev. E 74 031123
[7] Quan H T and Cucchietti F M 2009 Phys. Rev. E 79 031101
[8] Sachdev S 1999 Quantum Phase Transitions (Cambridge:Cambridge University Press)
[9] Schwandt D, Alet F and Capponi S 2009 Phys. Rev. Lett. 103 170501
[10] Albuquerque A F, Alet F, Sire C and Capponi S 2010 Phys. Rev. B 81 064418
[11] Zhou H Q, Zhao J H and Li B 2008 J. Phys. A:Math. Theor. 41 492002
[12] Zanardi P, Venuti L C and Giorda P 2007 Phys. Rev. A 76 062318;
[13] Zanardi P, Quan H T, Wang X G and Sun C P 2007 Phys. Rev. A 75 032109
[14] Chen Y, Wang Z D, Li Y Q and Zhang F C 2007 Phys. Rev. B 75 195113
[15] West J R, Lidar D A, Fong B H and Gyure M F 2010 Phys. Rev. Lett. 105 230503
[16] Ma Z H, Zhang F L and Chen J L 2009 Phys. Lett. A 373 3407
[17] Chen J L, Fu L B, Ungar A A and Zhao X G 2002 Phys. Rev. A 65 054304
[18] Pan C N, Fang J S, Peng X F, Liao X P and Fang M F 2011 Acta Phys. Sin. 60 090303 (in Chinese)
[19] Meng S Y and Wu W 2011 Acta Phys. Sin. 58 5311 (in Chinese)
[20] Chen J L, Fu L B, Ungar A A and Zhao X G 2002 Phys. Rev. A 65 024303
[21] Ma Z H, Zhang F L and Chen J L 2008 Phys. Rev. A 78 064305
[22] Buonsante P and Vezzani A 2007 Phys. Rev. Lett. 98 110601
[23] You W L, Li Y W and Gu S J 2007 Phys. Rev. E 76 022101
[24] Venuti L C and Zanardi P 2007 Phys. Rev. Lett. 99 095701
[25] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[26] Zanardi P, Giorda P and Cozzini M 2007 Phys. Rev. Lett. 99 100603
[27] Cozzini M, Giorda P and Zanardi P 2007 Phys. Rev. B 014439
[28] Lopez C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[29] Drinfeld V G 1985 Sov. Math. Dokl. 32 254
[30] Kulish P P and Slyanin E K 1982 Integrable Quantum Field Theories, Lecture Notes in Physics (Berlin:Springer Verlag) pp. 61--119
[31] Lee S 2010 Phys. Rev. Lett. 105 151603
[32] Tian L J, Jin Y L and Jiang Y 2010 Phys. Lett. B 686 207
[33] Tian L J and Qin L G 2010 Eur. Phys. J. D 57 123
[34] Uglov D 1998 Commun. Math. Phys. 191 663
[35] Kundu A 1998 Phys. Lett. A 249 126
[36] Bernard D 1993 Inter. J. Modern Phys. B 7 3517
[37] Paraoanu G S 2006 Phys. Rev. B 74 140504(R)
[38] Oh S 2009 Phys. Lett. A 373 644
[39] Zhou Y, Zhang G F, Li S S and Abliz A 2009 Europhys. Lett. 86 50004
[40] Mendonca P E M F, Napolitano R J, Marchiolli M A, Foster C J and Liang Y C 2008 Phys. Rev. A 78 052330
[41] L? J F and Ma S J 2011 Acta Phys. Sin. 60 080301 (in Chinese)
[42] Ge M L, Xue K and Cho Y M 1998 Phys. Lett. A 249 358
[43] Alexander Molev 2007 Yangians and Classical Lie algebras (Mathematical Surveys and Monographs) (Providence:American Mathematical Society)
[1] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[2] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[5] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
[6] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[7] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[8] Average fidelity estimation of twirled noisy quantum channel using unitary 2t-design
Linxi Zhang(张林曦), Changhua Zhu(朱畅华), Changxing Pei(裴昌幸). Chin. Phys. B, 2019, 28(1): 010304.
[9] Estimation of photon counting statistics with imperfect detectors
Xiao-Chuan Han(韩晓川), Dong-Wei Zhuang(庄东炜), Yu-Xuan Li(李雨轩), Jun-Feng Song(宋俊峰), Yong-Sheng Zhang(张永生). Chin. Phys. B, 2018, 27(7): 074208.
[10] Identifying the closeness of eigenstates in quantum many-body systems
Hai-bin Li(李海彬), Yang Yang(杨扬), Pei Wang(王沛), Xiao-guang Wang(王晓光). Chin. Phys. B, 2017, 26(8): 080502.
[11] An intermediate state of T7 RNA polymerase provides another pathway of nucleotide selection
Zhan-Feng Wang(王展峰), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业), Ping Xie(谢平). Chin. Phys. B, 2017, 26(10): 100203.
[12] Fidelity between Gaussian mixed states with quantum state quadrature variances
Hai-Long Zhang(张海龙), Chun Zhou(周淳), Jian-Hong Shi(史建红), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2016, 25(4): 040304.
[13] Computational investigations on polymerase actions in gene transcription and replication: Combining physical modeling and atomistic simulations
Jin Yu(喻进). Chin. Phys. B, 2016, 25(1): 018706.
[14] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰). Chin. Phys. B, 2015, 24(3): 034208.
[15] Statistical properties of coherent photon-subtracted two-mode squeezed vacuum and its application in quantum teleportation
Zhang Guo-Ping (张国平), Zheng Kai-Min (郑凯敏), Liu Shi-You (刘世右), Hu Li-Yun (胡利云). Chin. Phys. B, 2014, 23(5): 050301.
No Suggested Reading articles found!