|
|
High-order harmonic generation with a two-color laser pulse |
Luo Lao-Yong(罗老永), Du Hong-Chuan(杜洪川), and Hu Bi-Tao(胡碧涛)† |
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract We theoretically investigate the electron dynamics of the high-order harmonics generation process by combining a near-infrared 800 nm driving pulse with a mid-infrared 2000 nm control field. We also investigate the emission time of harmonics using time-frequency analysis to illustrate the physical mechanisms of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variations in harmonic intensity for different control field strengths and delays. We find that the width of the harmonic plateau can be extended when the control electric field is added, and a supercontinuum from 198 to 435 eV is generated, from which an isolated 61-as pulse can be directly obtained.
|
Received: 17 May 2011
Revised: 23 July 2011
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11075069, 91026021, and 11075068), the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2010-k08), and the Scholarship Award for Excellent Doctoral Student granted by the Ministry of Education, China. |
Corresponding Authors:
Hu Bi-Tao,hubt@lzu.edu.cn
E-mail: hubt@lzu.edu.cn
|
Cite this article:
Luo Lao-Yong(罗老永), Du Hong-Chuan(杜洪川), and Hu Bi-Tao(胡碧涛) High-order harmonic generation with a two-color laser pulse 2012 Chin. Phys. B 21 033202
|
[1] |
Spielmann C, Burnett N H, Sartania S, Koppitsch R, Schnerer M, Kan C, Lenzner M, Wobrauschek P and Krausz F 1997 Science 278 661
|
[2] |
Chang Z, Rundquist A, Wang H, Murnane M M and Kapteyn H C 1997 Phys. Rev. Lett. 79 2967
|
[3] |
Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
|
[4] |
Yao J, Li Y, Zeng B, Xiong H, Xu H, Fu Y, Chu W, Ni J, Liu X, Chen J, Cheng Y and Xu Z 2010 Phys. Rev. A 82 023826
|
[5] |
Christov I P, Murnane M M and Kapteyn H C 1997 Phys. Rev. Lett. 78 1251
|
[6] |
Chang Z 2005 Phys. Rev. A 71 023813
|
[7] |
Du H and Hu B 2010 Opt. Express 18 25966
|
[8] |
Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K and Chang Z 2009 Phys. Rev. Lett. 103 183901
|
[9] |
Zhang G, Wu J, Xia J and Liu X 2009 Phys. Rev. A 80 055404
|
[10] |
Zeng Z, Cheng Y, Fu Y, Song X, Li R and Xu Z 2008 Phys. Rev. A 77 023416
|
[11] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[12] |
McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595
|
[13] |
Chang Z, Rundquist A, Wang H, Margaret M M and Henry C K 1997 Phys. Rev. Lett. 79 2967
|
[14] |
Hong W, Zhang Q, Yang Z and Lu P 2009 Phys. Rev. A 80 053407
|
[15] |
Paul A, Bartels R A, Tobey R, Green H, Welman S, Christov I P, Murnane M M, Kapteyn H C and Backus S 2003 Nature 421 51
|
[16] |
Zheng L, Chen X, Tang S and Li R 2007 Opt. Express 15 17985
|
[17] |
Seres E, Seres J, Krausz F and Spielmann C 2004 Phys. Rev. Lett. 92 163002
|
[18] |
Tate J, Auguste T, Muller H, Salieres P, Agostini P and DiMauro L F 2007 Phys. Rev. Lett. 98 013901
|
[19] |
Du H, Wang H and Hu B 2011 Chin. Phys. B 20 044207
|
[20] |
Ye X, Zhou X, Zhao S and Li P 2009 Acta Phys. Sin. 58 1579 (in Chinese)
|
[21] |
Guo Y, Lu R, Han K and He G 2009 Int. J. Quant. Chem. 109 3410
|
[22] |
Takahashi E, Kanai T, Ishikawa K, Nabekawa Y and Midorikawa K 2008 Phys. Rev. Lett. 101 253901
|
[23] |
Doumy G, Wheeler J, Roedig C, Chirla R, Agostini P and DiMauro L F 2009 Phys. Rev. Lett. 102 093002
|
[24] |
Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Nature 427 817
|
[25] |
Du H, Wang H and Hu B 2010 Phys. Rev. A 81 063813
|
[26] |
Lewenstein M, Balcou P, Yu M I, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[27] |
Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191
|
[28] |
Zhang Q, Lu P, Lan P, Hong W and Yang Z 2008 Opt. Express 16 9797
|
[29] |
Antoine P, Piraux B and Maquet A 1995 Phys. Rev. A 51 R1750
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|