Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 044205    DOI: 10.1088/1674-1056/21/4/044205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity

Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿)
Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  We propose a protocol to generate a four-photon polarization-entangled cluster state with cross-Kerr nonlinearity by using the interference of polarized photons. The protocol is based on optical elements, cross-Kerr nonlinearity, and homodyne measurement, therefore it is feasible with current experimental technology. The success probability of our protocol is optimal, this property makes our protocol more efficient than others in the applications of quantum communication.
Keywords:  cluster state      homodyne measurement      cross-Kerr nonlinearity  
Received:  20 July 2011      Revised:  10 September 2011      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.67.-a (Quantum information)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11064016).
Corresponding Authors:  Zhang Shou,szhang@ybu.edu.cn     E-mail:  szhang@ybu.edu.cn

Cite this article: 

Su Shi-Lei(苏石磊), Wang Yuan(王媛), Guo Qi(郭奇), Wang Hong-Fu(王洪福), and Zhang Shou(张寿) Generating a four-photon polarization-entangled cluster state with homodyne measurement via cross-Kerr nonlinearity 2012 Chin. Phys. B 21 044205

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phy. Rev. Lett. 70 1895
[5] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[6] Nielsen M A 2004 Phys. Rev. Lett. 93 040503
[7] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[8] Dür and Briegel H J 2004 Phys. Rev. Lett. 92 180403
[9] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[10] Zhou D L, Zeng B, Xu Z and Sun C P 2003 Phys. Rev. A 68 062303
[11] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[12] Nielsen M A 2004 Phys. Rev. Lett. 93, 040503
[13] Nielsen M A and Dawson C M 2005 Phys. Rev. A 71 042323
[14] Chen J L, Xue K and Ge M L 2007 Phys. Rev. A 76 042324
[15] Zou X B and Mathis W 2005 Phys. Rev. A 71 032308
[16] Imoto N, Haus H A and Yamamoto Y 1985 Phys. Rev. A 32 2287
[17] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[18] Munro W J, Nemoto K, Beausoleil R G and Spiller T P 2005 Phys. Rev. A 71 033819
[19] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[20] Xia Y, Song J, Lu P M and Song H S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 025503
[21] Hinkley E D and Freed C 1963 Phys. Rev. Lett. 23 277
[22] Jiang L A and Luu J X 2008 Appl. Opt. 47 1486
[23] Zhao C R and Ye L 2011 Opt. Commun. 284 541
[24] Ladd T D, Van L P and Nemoto K 2006 New J. Phys. 8 184
[25] Louis S G R, Nemoto K, Munro W J and Spiller T P 2007 New J. Phys. 9 193
[26] Schmidt H and Imamovglu A 1996 Opt. Lett. 21 1936
[27] Lukin M D and Imamovglu A 2000 Phys. Rev. Lett. 84 1419
[28] Lukin M D and Imamovglu A 2001 Nature (London) 413 273
[29] Munro W J, Nemoto K, Beausoleil R G and Spiller T P 2005 Phys. Rev. A 71 033819
[30] Jin G S, Lin Y and Wu B 2007 Phys. Rev. A 75 054302
[31] Jeong H 2005 Phys. Rev. A 72 034305
[32] Zhao C R and Ye L 2011 Sci. China. (Phys. Mech. Astron.) 54 479
[33] Du Q H, Ye M Y, Chen Z H, Li X H and Lin X M 2008 Commun. Theor. Phys. 50 623
[34] Lai B H, Du G, Yu Y F, Zhang Z M and Liu S H 2010 Acta Phys. Sin. 59 1017 (in Chinese)
[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[3] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[4] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[5] Hierarchical and probabilistic quantum information splitting of an arbitrary two-qubit state via two cluster states
Wen-Ming Guo(郭文明), Lei-Ru Qin(秦蕾茹). Chin. Phys. B, 2018, 27(11): 110302.
[6] Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement
Jino Heo, Chang-Ho Hong, Dong-Hoon Lee, Hyung-Jin Yang. Chin. Phys. B, 2016, 25(2): 020306.
[7] Efficient entanglement concentration for arbitrary less-entangled NOON state assisted by single photons
Lan Zhou(周澜) and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2016, 25(2): 020308.
[8] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
[9] Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities
Sun Qian (孙倩), He Juan (何娟), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(6): 060305.
[10] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang (闫香), Yu Ya-Fei (於亚飞), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(6): 060306.
[11] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[12] Electronic cluster state entanglement concentration based on charge detection
Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波). Chin. Phys. B, 2014, 23(2): 020313.
[13] Complete four-photon cluster-state analyzer based on cross-Kerr nonlinearity
Wang Zhi-Hui (王志会), Zhu Long (朱龙), Su Shi-Lei (苏石磊), Guo Qi (郭奇), Cheng Liu-Yong (程留永), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(9): 090309.
[14] Efficient generation of two-dimensional cluster states in cavity QED
Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远). Chin. Phys. B, 2013, 22(4): 040307.
[15] Efficient three-step entanglement concentration for an arbitrary four-photon cluster state
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2013, 22(3): 030305.
No Suggested Reading articles found!