Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040402    DOI: 10.1088/1674-1056/21/4/040402
GENERAL Prev   Next  

Verification of the spin-weighted spheroidal equation in the case of s=1

Zhang Qing(张晴), Tian Gui-Hua(田贵花), Sun Yue(孙越), and Dong Kun(董锟)
School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The spin-weighted spheroidal equation in the case of s=1 is studied. By transforming the independent variables, we make it take the Schrödinger-like form. This Schrödinger-like equation is very interesting in itself. We investigate it by using super-symmetric quantum mechanics and obtain the ground eigenvalue and eigenfunction, which are consistent with the results previously obtained.
Keywords:  spheroidal wave equation      supersymmetric quantum mechanics      super-potential      eigenvalue and eigenfunction  
Received:  24 October 2011      Revised:  24 November 2011      Accepted manuscript online: 
PACS:  04.25.Nx (Post-Newtonian approximation; perturbation theory; related Approximations)  
  04.70.s  
  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.10875018 and 10773002)
Corresponding Authors:  Dong Kun, E-mail:woailiuyanbin1@126.com     E-mail:  woailiuyanbin1@126.com

Cite this article: 

Zhang Qing(张晴), Tian Gui-Hua(田贵花), Sun Yue(孙越), and Dong Kun(董锟) Verification of the spin-weighted spheroidal equation in the case of s=1 2012 Chin. Phys. B 21 040402

[1] Teukolsky S 1972 Phys. Rev. Lett. 29 1114
[2] Teukolsky S 1973 J. Astrophys. 185 635
[3] Press W and Teukolsky S 1973 J. Astrophys. 185 649
[4] Berti E, Cardoso V, Kokkotas K D and Onozawa H 2003 Phys. Rev. D 68 124018
[5] Casals M and Ottewill A 2005 Phys. Rev. D 71 064025
[6] Berti E, Cardoso V and Casals M 2006 Phys. Rev. D 73 024013
[7] Flammer C 1956 Spheroidal Wave Functions (Stanford: Stanford University Press) Chaps. 1-3
[8] Li L W, Kang X K and Leong M S 2002 Spheroidal Wave Functions in Electromagnetic Theory (New York: John Wiley and Sons, Inc.) Chap. 1
[9] Tian G H and Zhong S Q 2009 arXiv/: 0906.4685, V2
[10] Tian G H 2010 Chin. Phys. Lett. 27 030308
[11] Tian G H and Zhong S Q 2010 Chin. Phys. Lett. 27 030405
[12] Tian G H and Zhong S Q 2010 Sci. Chin. G 54 393 Doi: 10.1007/s11433-011-4251-y
[13] Tang W L and Tian G H 2011 Chin. Phys. B 20 010304
[14] Tang W L and Tian G H 2011 Chin. Phys. B 20 050301
[15] Sun Y, Tian G H and Dong K 2011 Chin. Phys. B 20 061101
[16] Dong K, Tian G H and Sun Y 2011 Chin. Phys. B 20 071101
[17] Dong K, Tian G H and Sun Y 2010 Study of the Spin-weighted Spheroidal Wave Equation in the Case of s=1/2 arXiv/: 1011.2579
[18] Li K and Tian G H 2011 Sci. Chin. G 41 729 (in Chinese)
[19] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 268
[20] Zhong J M and Xu B W 2006 Acta Phys. Sin. 55 1571 (in Chinese)
[21] Huang B W and Wang D Y 2002 Acta Phys. Sin. 51 1163 (in Chinese)
[22] Gradsbteyn I S and Ryzbik L M 2000 Table of Integrals, Series, and Products 6th edn. (Singapore: Elsevier) p. 100
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM
A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo. Chin. Phys. B, 2014, 23(12): 120303.
[3] Transmission time in the reflectionless complex potential
Yin Cheng (殷澄), Wang Xian-Ping (王贤平), Shan Ming-Lei (单鸣雷), Han Qing-Bang (韩庆邦), Zhu Chang-Ping (朱昌平). Chin. Phys. B, 2014, 23(10): 100301.
[4] Solve the spin-weighted spheroidal wave equation
Li Yu-Zhen (李玉祯), Tian Gui-Hua (田贵花), Dong Kun (董锟). Chin. Phys. B, 2013, 22(6): 060203.
[5] New WKB method in supersymmetry quantum mechanics
Tian Gui-Hua(田贵花) . Chin. Phys. B, 2012, 21(4): 040301.
[6] Analytic solutions of the ground and excited states of the spin-weighted spheroidal equation in the case of s=2
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040401.
[7] Low frequency asymptotics for the spin-weighted spheroidal equation in the case of s=1/2
Dong Kun(董锟), Tian Gui-Hua(田贵花), and Sun Yue(孙越). Chin. Phys. B, 2011, 20(7): 071101.
[8] Spin-weighted spheroidal equation in the case of s=1
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟). Chin. Phys. B, 2011, 20(6): 061101.
[9] Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies
Tang Wen-Lin (唐文林), Tian Gui-Hua (田贵花). Chin. Phys. B, 2011, 20(5): 050301.
[10] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[11] Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method
Tang Wen-Lin(唐文林) and Tian Gui-Hua(田贵花). Chin. Phys. B, 2011, 20(1): 010304.
[12] Bound states of the Klein-Gordon and Dirac equation for scalar and vector pseudoharmonic oscillator potentials
Chen Gang (陈刚), Chen Zi-Dong (陈子栋), Lou Zhi-Mei (楼智美). Chin. Phys. B, 2004, 13(3): 279-282.
[13] NEW EXACTLY SOLVABLE SUPERSYMMETRIC PERIODIC POTENTIALS
Liu Ke-jia (刘克家), He Li (何力), Zhou Guo-li (周国利), Wu Yu-jiao (伍玉娇). Chin. Phys. B, 2001, 10(12): 1110-1112.
No Suggested Reading articles found!