|
|
Robustness of quantum discord to sudden death in nuclear magnetic resonance |
Xu Jian-Wei(胥建卫)a)† and Chen Qi-Hui(陈起辉)b) |
a. Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China;
b. Physics Department, Sichuan University, Chengdu 610065, China |
|
|
Abstract We investigate the dynamics of the entanglement and quantum discord of two qubits in liquid state homonuclear nuclear magnetic resonance. Applying a phenomenological description for nuclear magnetic resonance under a relaxation process, and taking a group of typical parameters of nuclear magnetic resonance, we show that when a zero initial state experiences a relaxation process, its entanglement disappears completely after a sequence of so-called sudden deaths and revivals, while the quantum discord retains remarkable values after a sequence of oscillations. That is to say, the quantum discord is more robust than entanglement.
|
Received: 31 July 2011
Revised: 28 September 2011
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
76.60.Es
|
(Relaxation effects)
|
|
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China(Grant No.2010scu23002) |
Corresponding Authors:
Xu Jian-Wei, E-mail:xxujianwei@yahoo.cn
E-mail: xxujianwei@yahoo.cn
|
Cite this article:
Xu Jian-Wei(胥建卫) and Chen Qi-Hui(陈起辉) Robustness of quantum discord to sudden death in nuclear magnetic resonance 2012 Chin. Phys. B 21 040302
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[3] |
Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
|
[4] |
Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
|
[5] |
Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
|
[6] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[7] |
Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
|
[8] |
Dillenschneider R 2008 Phys. Rev. B 78 224413
|
[9] |
Sarandy M S 2009 Phys. Rev. A 80 022108
|
[10] |
Wang L C, Shen J and Yi X X 2011 Chin. Phys. B 20 050306
|
[11] |
Cui J and Fan H 2009 arXiv: 0904.2703 [quant-ph]
|
[12] |
Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
|
[13] |
Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
|
[14] |
Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
|
[15] |
Wang Q, Liao J Q and Zeng H S 2010 Chin. Phys. B 19 100311
|
[16] |
Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
|
[17] |
Zhang J S, Chen L, Abdel-Aty M and Chen A X 2011 arXiv: 1101.5429 [quant-ph]
|
[18] |
Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
|
[19] |
Vandersypen L M K and Chuang I L 2005 Rev. Mod. Phys. 76 1037
|
[20] |
Oliveira I S, Bonagamba T J, Sarthour R S, Freitas J C C and deAzevedo E R 2007 NMR Quantum Information Processing (Amsterdam: Elsevier)
|
[21] |
Fahmy A F, Marx R, Bermel W and Glaser S J 2008 Phys. Rev. A 78 022317
|
[22] |
Furman G B, Meerovich V M and Sokolovsky V L 2008 Phys. Rev. A 78 (2008) 042301
|
[23] |
Rufeil-Fiori E, S醤chez C M, Oliva F Y, Pastawski H M and Levstein P R 2009 Phys. Rev. A 79 032324
|
[24] |
Ota Y, Goto Y, Kondo Y and Nakahara M 2009 Phys. Rev. A 80 052311
|
[25] |
Zhang W, Cappellaro P, Antler N, Pepper B, Cory D G, Dobrovitski V V, Ramanathan C and Viola L 2009 Phys. Rev. A 80 052323
|
[26] |
Soares-Pinto D O, C閘eri L C, Auccaise R, Fan-chini F F, de Azevedo E R, Maziero J, Bonagamba T J and Serra R M 2010 Phys. Rev. A 81 062118
|
[27] |
Yao X W, Zeng B R, Liu Q, Mu X Y, Lin X C, Yang C, Pan J and Chen Z 2010 Acta Phys. Sin. 59 6837 (in Chinese)
|
[28] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[29] |
Luo S 2008 Phys. Rev. A 77 042303
|
[30] |
Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
|
[31] |
Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
|
[32] |
Luo S and Fu S 2010 Phys. Rev. A 82 034302
|
[33] |
Wijewardane H O and Ullrich C A 2004 Appl. Phys. Lett. 84 3984
|
[34] |
Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|