Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040302    DOI: 10.1088/1674-1056/21/4/040302
GENERAL Prev   Next  

Robustness of quantum discord to sudden death in nuclear magnetic resonance

Xu Jian-Wei(胥建卫)a) and Chen Qi-Hui(陈起辉)b)
a. Key Laboratory for Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China;
b. Physics Department, Sichuan University, Chengdu 610065, China
Abstract  We investigate the dynamics of the entanglement and quantum discord of two qubits in liquid state homonuclear nuclear magnetic resonance. Applying a phenomenological description for nuclear magnetic resonance under a relaxation process, and taking a group of typical parameters of nuclear magnetic resonance, we show that when a zero initial state experiences a relaxation process, its entanglement disappears completely after a sequence of so-called sudden deaths and revivals, while the quantum discord retains remarkable values after a sequence of oscillations. That is to say, the quantum discord is more robust than entanglement.
Keywords:  quantum discord      nuclear magnetic resonance      concurrence      sudden death  
Received:  31 July 2011      Revised:  28 September 2011      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  76.60.Es (Relaxation effects)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of China(Grant No.2010scu23002)
Corresponding Authors:  Xu Jian-Wei, E-mail:xxujianwei@yahoo.cn     E-mail:  xxujianwei@yahoo.cn

Cite this article: 

Xu Jian-Wei(胥建卫) and Chen Qi-Hui(陈起辉) Robustness of quantum discord to sudden death in nuclear magnetic resonance 2012 Chin. Phys. B 21 040302

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[4] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[5] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[6] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[7] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[8] Dillenschneider R 2008 Phys. Rev. B 78 224413
[9] Sarandy M S 2009 Phys. Rev. A 80 022108
[10] Wang L C, Shen J and Yi X X 2011 Chin. Phys. B 20 050306
[11] Cui J and Fan H 2009 arXiv: 0904.2703 [quant-ph]
[12] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[13] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[14] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[15] Wang Q, Liao J Q and Zeng H S 2010 Chin. Phys. B 19 100311
[16] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
[17] Zhang J S, Chen L, Abdel-Aty M and Chen A X 2011 arXiv: 1101.5429 [quant-ph]
[18] Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
[19] Vandersypen L M K and Chuang I L 2005 Rev. Mod. Phys. 76 1037
[20] Oliveira I S, Bonagamba T J, Sarthour R S, Freitas J C C and deAzevedo E R 2007 NMR Quantum Information Processing (Amsterdam: Elsevier)
[21] Fahmy A F, Marx R, Bermel W and Glaser S J 2008 Phys. Rev. A 78 022317
[22] Furman G B, Meerovich V M and Sokolovsky V L 2008 Phys. Rev. A 78 (2008) 042301
[23] Rufeil-Fiori E, S醤chez C M, Oliva F Y, Pastawski H M and Levstein P R 2009 Phys. Rev. A 79 032324
[24] Ota Y, Goto Y, Kondo Y and Nakahara M 2009 Phys. Rev. A 80 052311
[25] Zhang W, Cappellaro P, Antler N, Pepper B, Cory D G, Dobrovitski V V, Ramanathan C and Viola L 2009 Phys. Rev. A 80 052323
[26] Soares-Pinto D O, C閘eri L C, Auccaise R, Fan-chini F F, de Azevedo E R, Maziero J, Bonagamba T J and Serra R M 2010 Phys. Rev. A 81 062118
[27] Yao X W, Zeng B R, Liu Q, Mu X Y, Lin X C, Yang C, Pan J and Chen Z 2010 Acta Phys. Sin. 59 6837 (in Chinese)
[28] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[29] Luo S 2008 Phys. Rev. A 77 042303
[30] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[31] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[32] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[33] Wijewardane H O and Ullrich C A 2004 Appl. Phys. Lett. 84 3984
[34] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[3] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[4] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[5] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[6] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[7] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[8] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[9] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[10] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[11] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[12] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[13] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[14] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[15] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
No Suggested Reading articles found!