Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040301    DOI: 10.1088/1674-1056/21/4/040301
GENERAL Prev   Next  

New WKB method in supersymmetry quantum mechanics

Tian Gui-Hua(田贵花)
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  In this paper, we combine the perturbation method in supersymmetric quantum mechanics with the WKB method to restudy an angular equation coming from the wave equations for a Schwarzschild black hole with a straight string passing through it. This angular equation serves as a naive model for our investigation of the combination of supersymmetric quantum mechanics and the WKB method, and will provide valuable insight for our further study of the WKB approximation in real problems, like the one in spheroidal equations, etc.
Keywords:  new WKB method      super-potential      shape-invariance      eigenvalues and eigenfunctions  
Received:  20 September 2011      Revised:  16 November 2011      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
  11.30.Pb (Supersymmetry)  
Fund: Project supported by the National Natural Science Foundation of China(Grant No.10875018)
Corresponding Authors:  Tian Gui-Hua, E-mail:hua2007@126.com     E-mail:  hua2007@126.com

Cite this article: 

Tian Gui-Hua(田贵花) New WKB method in supersymmetry quantum mechanics 2012 Chin. Phys. B 21 040301

[1] Froman N and Froman P O 1965 JWKB Approximation, Contributions to the Theory (Amsterdam: North Holland Publishing Company) Chap. 1
[2] Comtet A, Bandrauk A and Campbell D K 1985 Phys. Lett. B 150 159
[3] Khare A 1985 Phys. Lett. B 161 131
[4] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 268
[5] Tian G H and Zhong S Q 2009 “Investigation of the Recurrence Relations for the Spheroidal Wave Functions” arXiv: gr-qc/0906.4687v3
[6] Tian G H and Zhong S Q 2009 “Study the Spheroidal Wave Functions by SUSY Method” arXiv: gr-qc/0906.4685v3
[7] Tian G H and Zhong S Q 2010 Chin. Phys. Lett. 27 040305
[8] Tang W L and Tian G H 2011 Chin. Phys. B 20 010304
[9] Tang W L and Tian G H 2011 Chin. Phys. B 20 050301
[10] Tian G H 2010 Chin. Phys. Lett. 27 030308
[11] Sun Y, Tian G H and Dong K 2011 Chin. Phys. B 20 061101
[12] Dong K, Tian G H and Sun Yue 2011 Chin. Phys. B 20 071101
[13] Tian G H 2010 Chin. Phys. Lett. 27 100306
[14] Vilenkin A 1981 Phys. Rev. D 23 852
[15] Linet B 1985 Gen. Rel. Grav. 17 1109
[16] Gott J R 1985 Astrophys. J. 288 422
[17] Chen S B, Wang B and Su R K 2008 arXiv: gr-qc/0701088v2
[18] Geusa de A Marques and Bezerra V B 2002 Class. Quantum Grav. 19 985
[19] Geusa de A Marques and Bezerra V B 2001 it arXiv: gr-qc0111019 v1
[1] Analytic solutions of the ground and excited states of the spin-weighted spheroidal equation in the case of s=2
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040401.
[2] Verification of the spin-weighted spheroidal equation in the case of s=1
Zhang Qing(张晴), Tian Gui-Hua(田贵花), Sun Yue(孙越), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040402.
[3] Spin-weighted spheroidal equation in the case of s=1
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟). Chin. Phys. B, 2011, 20(6): 061101.
[4] Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies
Tang Wen-Lin (唐文林), Tian Gui-Hua (田贵花). Chin. Phys. B, 2011, 20(5): 050301.
[5] Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method
Tang Wen-Lin(唐文林) and Tian Gui-Hua(田贵花). Chin. Phys. B, 2011, 20(1): 010304.
No Suggested Reading articles found!