Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 026801    DOI: 10.1088/1674-1056/21/2/026801
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Peptide friction in water nanofilm on mica surface

Zhou Bo(周波)a)b), Xiu Peng(修鹏)c), Wang Chun-Lei(王春雷)a), and Fang Hai-Ping(方海平)a)d)†
a. Department of Physical Biology and Department of Microscopic Water Dynamics, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P. O. Box 800-204, Shanghai 201800, China;
b. Graduate School of the Chinese Academy of Sciences, Beijing 100190, China;
c. Bio-X Laboratory, Department of Physics, Zhejiang University, Hangzhou 310027, China;
d. Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, 19(B) Yuquan Road, Beijing 100049, China
Abstract  Peptide frictions in water nanofilms of various thicknesses on a mica surface are studied via molecular dynamics simulations. We find that the forced lateral motion of the peptide exhibits stick-slip behaviour at low water coverage; in contrast, the smooth gliding motion is observed at higher water coverage. The adsorbed peptide can form direct peptide-surface hydrogen bonds as well as indirect peptide-water-surface hydrogen bonds with the substrate. We propose that the stick-slip phenomenon is attributed to the overall effects of direct and indirect hydrogen bonds formed between the surface and the peptide.
Keywords:  peptide friction      water nanofilm      mica surface      molecular dynamics simulation  
Received:  17 May 2011      Revised:  22 July 2011      Accepted manuscript online: 
PACS:  68.35.Af (Atomic scale friction)  
  81.40.Pq (Friction, lubrication, and wear)  
  68.08.-p (Liquid-solid interfaces)  
  68.47.Pe (Langmuir-Blodgett films on solids; polymers on surfaces; biological molecules on surfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10825520), the National Basic Research Program of China (Grant No. 2007CB936000), and the National Science Foundation for Post-Doctoral Scientists of China (Grant No. 20100480645).
Corresponding Authors:  Fang Hai-Ping,fanghaiping@sinap.ac.cn     E-mail:  fanghaiping@sinap.ac.cn

Cite this article: 

Zhou Bo(周波), Xiu Peng(修鹏), Wang Chun-Lei(王春雷), and Fang Hai-Ping(方海平) Peptide friction in water nanofilm on mica surface 2012 Chin. Phys. B 21 026801

[1] Harding J H, Duffy D M, Sushko M L, Rodger P M, Quigley D and Elliott J A 2008 Chem. Rev. 108 4823
[2] Gray J J 2004 Curr. Opin. Struct. Biol. 14 110
[3] Netz R R and Andelman D 2003 Phys. Rep. 380 1
[4] Monti S, Alderighi M, Duce C, Solaro R and Tine M R 2009 J. Phys. Chem. C 113 2433
[5] Nonella M and Seeger S 2010 Chem. Phys. 378 73
[6] Sheng Y B, Wang W and Chen P 2010 Protein Sci. 19 1639
[7] Calzolari A, Cicero G, Cavazzoni C, Di Felice R, Catellani A and Corni S 2010 J. Am. Chem. Soc. 132 4790
[8] Pirzer T and Hugel T 2009 Chem. Phys. Chem. 10 2795
[9] Geisler M, Horinek D and Hugel T 2009 Macromolecules 42 9338
[10] Cole D J, Payne M C and Ciacchi L C 2009 Phys. Chem. Chem. Phys. 11 11395
[11] Truhlar D G 2008 J. Am. Chem. Soc. 130 16824
[12] Horinek D, Serr A, Geisler M, Pirzer T, Slotta U, Lud S Q, Garrido J A, Scheibel T, Hugel T and Netz R R 2008 Proc. Natl. Acad. Sci. USA 105 2842
[13] Desai T G, Keblinski P, Kumar S K and Granick S 2007 Phys. Rev. Lett. 98 218301
[14] Magdans U, Torrelles X, Angermund K, Gies H and Rius J 2007 Langmuir 23 4999
[15] Heinz H, Koerner H anderson K L, Vaia R A and Farmer B L 2005 Chem. Mater. 17 5658
[16] Xiu P, Zhou B, Qi W P, Lu H J, Tu Y S and Fang H P 2009 J. Am. Chem. Soc. 131 2840
[17] Zuo G H, Huang Q, Wei G H, Zhou R H and Fang H P 2010 ACS Nano 4 7508
[18] Geisler M, Netz R R and Hugel T 2010 Angew. Chem. Int. Ed. 49 4730
[19] Wang C L, Li Z X, Li J Y, Xiu P, Hu J and Fang H P 2008 Chin. Phys. B 17 2646
[20] Zhang X J, Dong Y K, Liu B H and Schaefer J A 2009 Chin. Phys. B 18 231
[21] Zhou X Y and Lu H J 2007 Chin. Phys. 16 335
[22] Serr A, Horinek D and Netz R R 2008 J. Am. Chem. Soc. 130 12408
[23] Kuhner F, Erdmann M, Sonnenberg L, Serr A, Morfill J and Gaub H E 2006 Langmuir 22 11180
[24] Serr A, Sendner C, Muller F, Einert T R and Netz R R 2010 Europhys. Lett. 92 38002
[25] Hu J, Xiao X D, Ogletree D F and Salmeron M 1995 Science 268 267
[26] Odelius M, Bernasconi M and Parrinello M 1997 Phys. Rev. Lett. 78 2855
[27] Miranda P B, Xu L, Shen Y R and Salmeron M 1998 Phys. Rev. Lett. 81 5876
[28] Cantrell W C and Ewing G E 2001 J. Phys. Chem. B 105 5434
[29] Cheng L, Fenter P, Nagy K L, Schlegel M L and Sturchio N C 2001 Phys. Rev. Lett. 87 156103
[30] Park S H and Sposito G 2002 Phys. Rev. Lett. 89 85501
[31] Spagnoli C, Loos K, Ulman A and Cowman M K 2003 J. Am. Chem. Soc. 125 7124
[32] Wang J W, Kalinichev A G, Kirkpatrick R J and Cygan R T 2005 J. Phys. Chem. B 109 15893
[33] Park C, Fenter P A, Nagy K L and Sturchio N C 2006 Phys. Rev. Lett. 97 016101
[34] Meleshyn A 2008 J. Phys. Chem. C 112 14495
[35] Malani A and Ayappa K G 2009 J. Phys. Chem. B 113 1058
[36] Xu K, Cao P G and Heath J R 2010 Science 329 1188
[37] Sakuma H and Kawamura K 2009 Geochim. Cosmochim. Acta 73 4100
[38] Leng Y and Cummings P T 2005 Phys. Rev. Lett. 94 26101
[39] Zhang F, Du H N, Zhang Z X, Ji L N, Li H T, Tang L, Wang H B, Fan C H, Xu H J, Zhang Y, Hu J, Hu H Y and He J H 2006 Angew. Chem. Int. Ed. 45 3611
[40] Whitehouse C, Fang J Y, Aggeli A, Bell M, Brydson R, Fishwick C W G, Henderson J R, Knobler C M, Owens R W, Thomson N H, Smith D A and Boden N 2005 Angew. Chem. Int. Ed. 44 1965
[41] Li H, Zhang F, Zhang Y, Ye M, Zhou B, Tang Y Z, Yang H J, Xie M Y, Chen S F, He J H, Fang H P and Hu J 2009 J. Phys. Chem. B 113 8795
[42] Ye M, Zhang Y, Li H, Xie M Y and Hu J 2010 J. Phys. Chem. B 114 15759
[43] Ye M, Li B, Zhang Y, Li H, Wang X Y and Hu J 2011 J. Phys. Chem. B 115 2754
[44] Billingsley D J, Kirkham J, Bonass W A and Thomson N H 2010 Phys. Chem. Chem. Phys. 12 14727
[45] Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wan R Z, Hu J Z and Fang H P 2009 Phys. Rev. Lett. 103 137801
[46] Wang C L, Zhou B, Xiu P and Fang H P 2011 J. Phys. Chem. C 115 3018
[47] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[48] Schlegel M L, Nagy K L, Fenter P, Cheng L, Sturchio N C and Jacobsen S D 2006 Geochim. Cosmochim. Acta 70 3549
[49] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theor. Comput. 4 435
[50] Cygan R T, Liang J J and Kalinichev A G 2004 J. Phys. Chem. B 108 1255
[51] Berendsen H J C, Postma J P M, van Gunsteren W F and Hermans J 1981 Intermolecular Forces (Dordrecht: D. Reidel) pp. 331-342
[52] Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O and Shaw D E 2010 Proteins: Struct. Funct. Bioinform. 78 1950
[53] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (New York: Oxford University Press) p. 21
[54] In-Chul Y and Max L B 1999 J. Chem. Phys. 111 3155
[55] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[56] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[57] Miyamoto S and Kollman P A 1992 J. Comput. Chem. 13 952
[58] Qi W, Lei X and Fang H 2010 ChemPhysChem 11 2146
[59] Argyris D, Ashby P D and Striolo A 2011 ACS Nano 5 2215
[60] Hess B 2002 J. Chem. Phys. 116 209
[61] Engin O, Villa A, Sayar M and Hess B 2010 J. Phys. Chem. B 114 11093
[62] Luzar A and Chandler D 1996 Nature 379 55
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!