Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 026103    DOI: 10.1088/1674-1056/21/2/026103
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Molecular dynamics simulations of point defects in plutonium grain boundaries

Ao Bing-Yun(敖冰云)a)†, Xia Ji-Xing(夏吉星) b), Chen Pi-Heng(陈丕恒)a), Hu Wang-Yu(胡望宇)b), and Wang Xiao-Lin(汪小琳) a)
a. National Key Laboratory for Surface Physics and Chemistry, P. O. Box 718-35, Mianyang 621907, China;
b. Department of Applied Physics, Hunan University, Changsha 410082, China
Abstract  A modified analytic embedded atom method (MAEAM) potential is constructed for fcc updelta-Pu. Molecular dynamics (MD) simulations with the potential are performed to investigate the interactions between two symmetrical tilt grain boundaries (GBs) and point defects such as He atom, vacancy and self-interstitial atom (SIA) in Pu. The calculated results show that point defect formation energies are on average lower than those in the lattice but variations from site to site along the GBs are very remarkable. Both substitutional and interstitial He atoms are trapped at GBs. Interstitial He atom is more strongly bound at the GB core than the substitutional He atom. The binding energy of SIA at GB core is higher than those of He atom and vacancy. GB core can bind many He atoms and SIAs due mainly to the fact that it contains many vacancies. Compared with He atom and SIA, the vacancy far from GB core is difficult to diffuse into the core. The GBs can act as sinks and sources of He atoms and SIAs, which may be a reason for the swelling of Pu after a period of self-irradiation because of the higher concentration of vacancy in the bulk.
Keywords:  plutonium      molecular dynamics      crystal defect      radiation damage  
Received:  17 May 2011      Revised:  21 August 2011      Accepted manuscript online: 
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.72.Cc (Kinetics of defect formation and annealing)  
  61.72.Qq (Microscopic defects (voids, inclusions, etc.))  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 20801007) and the Science and Technology Foundation of China Academy of Engineering Physics (Grant No. 2009A0301019).
Corresponding Authors:  Ao Bing-Yun,aobingyun24@yahoo.com.cn     E-mail:  aobingyun24@yahoo.com.cn

Cite this article: 

Ao Bing-Yun(敖冰云), Xia Ji-Xing(夏吉星), Chen Pi-Heng(陈丕恒), Hu Wang-Yu(胡望宇), and Wang Xiao-Lin(汪小琳) Molecular dynamics simulations of point defects in plutonium grain boundaries 2012 Chin. Phys. B 21 026103

[1] Chen J, Meng D Q, Du J G, Jiang G, Gao T and Zhu Z H 2010 Acta Phys. Sin. 59 1658 (in Chinese)
[2] Wolfer W G 2000 Los Almos Sci. 26 p. 274
[3] Ao B Y, Wang X L, Chen P H, Shi P, Hu W Y and Yang J Y 2010 Acta Phys. Sin. 59 4818 (in Chinese)
[4] Wu H L, Tian D F, Hao F H and Gong J 2011 Acta Phys. Sin. 60 032801 (in Chinese)
[5] Ao B Y, Wang X L, Hu W Y, Yang J Y and Xia J X 2007 J. Alloys Compd. 444-445 300
[6] Ao B Y, Yang J Y, Xia J X, Wang X L and Hu W Y 2009 J. Nucl. Mater. 385 75
[7] Nosé S 1991 Prog. Theor. Phys. Suppl. 103 1
[8] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[9] Baskes M I 1992 Phys. Rev. B 46 2727
[10] Ouyang Y, Zhang B, Liao S and Jin Z 1996 Z. Phys. B 101 161
[11] Deng H, Hu W, Shu X and Zhang B 2003 Surf. Sci. 543 95
[12] Yang J, Hu W, Deng H and Zhao D 2004 Surf. Sci. 572 439
[13] Hu W, Zhang B, Huang B, Gao F and Bacon D J 2001 J. Phys.: Condens. Matter 13 1193
[14] Hu W, Deng H and Fukumoto M 2003 Eur. Phys. J. B 34 429
[15] Hu W, Shu X and Zhang B 2002 Comput. Mater. Sci. 23 175
[16] Johnson R A 1990 Phys. Rev. B 41 9717
[17] Pochet P 2003 Nucl. Instr. Method Phys. Res. B 202 82
[18] Baskes M I 2000 Phys. Rev. B 62 15532
[19] Dai X, Savrasov S Y, Kotliar G, Migliori A, Ledbetter H and Abrahams E 2003 Science 300 953
[20] Cherne F J, Baskes M I and Holian B L 2003 Phys. Rev. B 67 092104
[21] Valone S M, Baskes M I, Stan M, Mitchell T E, Lawson A C and Sickafus K E 2004 J. Nucl. Mater. 324 41
[22] Fluss M J, Wirth B D, Wall M, Felter T E, Caturla M J, Kubota A and de la Rubia T D 2004 J. Alloys Compd. 368 62
[23] Baskes M I, Muralidharan K, Stan M, Valone S M and Cherne F J 2003 JOM 9 41
[24] Wong J, Krisch M, Farber D L, Occelli F, Schwartz A J, Chiang T C, Wall M, Boro C and Xu R 2003 Science 301 1078
[25] McQueeney R J, Lawson A C, Migliori A, Kelley T M, Fultz B, Ramos M, Martinez B, Lashley J C and Vogel S C 2004 Phys. Rev. Lett. 92 146401
[26] Söderlind P, Kotliar G, Haule K, Oppeneer and Guillaumont D 2010 MRS Bull. 35 p. 883
[27] Johnson R A 1973 J. Phys. F: Metal Phys. 3 295
[28] Baskes M I and Melius C F 1979 Phys. Rev. B 20 3197
[29] Valone S M, Baskes M I and Martin R L 2002 LA-UR-02-1958 (Los Almos National Laboratory)
[30] Dremov V, Sapozhnikov P, Kutepov A, Anisimov V, Korotin M, Shorikov A, Preston D L and Zocher M A 2008 Phys. Rev. B 77 224306
[31] Gesari S B, Pronsato M E and Juan A 2002 Appl. Surf. Sci. 187 207
[32] Sutton A P and Balluffi R W 1995 Interfaces in Crystalline Materials (Oxford: Clarendon Press)
[33] Howe J M 1997 Interfaces in Materials (New York: John Wiley)
[34] Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196
[35] Baskes M I and Vitek V 1985 Met. Trans. A 16 1625
[36] Kurtz R J and Heinisch H L 2004 J. Nucl. Mater. 329-333 1199
[37] Kimura A, Kasada R, Morishita K, Sugano R, Hasegawa A, Abe K, Yamamoto T, Matsui H, Yoshida N, Wirth B D and Rubia T D 2002 J. Nucl. Mater. 307-311 521
[38] Dudarev S L, Semenov A A and Woo C H 2003 Phys. Rev. B 67 094103
[39] Cottrell G A 2003 Fus. Eng. Des. 66-68 253
[40] Trinkaus H, Singh B N and Victoria M 1996 J. Nucl. Mater. 233-237 1089
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[7] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[8] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[9] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[10] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[11] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[12] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[13] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[14] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[15] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
No Suggested Reading articles found!