Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 025202    DOI: 10.1088/1674-1056/21/2/025202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Dielectric layer-dependent surface plasmon effect of metallic nanoparticles on silicon substrate

Xu Rui(徐锐)a), Wang Xiao-Dong(王晓东)a)†, Liu Wen(刘雯)a), Xu Xiao-Na(徐晓娜)a), Li Yue-Qiang(李越强)a), Ji An(季安)a), Yang Fu-Hua(杨富华)a)b), and Li Jin-Min(李晋闽)c)
a. Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b. The State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
c. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The electromagnetic interaction between Ag nanoparticles on the top of the Si substrate and the incident light has been studied by numerical simulations. It is found that the presence of dielectric layers with different thicknesses leads to the varied resonance wavelength and scattering cross section and consequently the shifted photocurrent response for all wavelengths. These different behaviours are determined by whether the dielectric layer is beyond the domain where the elcetric field of metallic plasmons takes effect, combined with the effect of geometrical optics. It is revealed that for particles of a certain size, an appropriate dielectric thickness is desirable to achieve the best absorption. For a certain thickness of spacer, an appropriate granular size is also desirable. These observations have substantial applications for the optimization of surface plasmon enhanced silicon solar cells.
Keywords:  nanoscale Ag cluster      surface plasmon      silicon substrate      dielectric layer  
Received:  07 August 2011      Revised:  21 September 2011      Accepted manuscript online: 
PACS:  52.40.Hf (Plasma-material interactions; boundary layer effects)  
  52.40.Fd (Plasma interactions with antennas; plasma-filled waveguides)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934104 and 2010CB933800) and the National Natural Science Foundation of China (Grant Nos. 60606024 and 61076077).
Corresponding Authors:  Wang Xiao-Dong,xdwang@semi.ac.cn     E-mail:  xdwang@semi.ac.cn

Cite this article: 

Xu Rui(徐锐), Wang Xiao-Dong(王晓东), Liu Wen(刘雯), Xu Xiao-Na(徐晓娜), Li Yue-Qiang(李越强), Ji An(季安), Yang Fu-Hua(杨富华), and Li Jin-Min(李晋闽) Dielectric layer-dependent surface plasmon effect of metallic nanoparticles on silicon substrate 2012 Chin. Phys. B 21 025202

[1] Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105
[2] Schaadt D M, Feng B and Yu E T 2005 Appl. Phys. Lett. 86 063106
[3] Shah A V, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C and Bailat J 2004 Prog. Photovolt. Res. Appl. 12 113
[4] Shah A, Vanecek M, Meier J, Meillaud F, Guillet J, Fischer D, Droz C, Niquille X, Fay S and Vallat-Sauvain E 2004 J. Non-Cryst. Solids 338-340 639
[5] Liu W, Wang X D, Li Y Q, Geng Z C, Yang F H and Li J M 2011 Sol. Energy Mater. Sol. Cells 95 693
[6] Terrazzoni-Daudrix V, Guillet J, Niquille X, Shah A, Morf R, Tishchenko A, Brioude V, Parriaux O and Fischer D 2004 MRS Symp. 769 195
[7] Catchpole K R and Polman A 2008 Opt. Express 16 21793
[8] Li W, Wang Y G and Yang B J 2011 Acta Phys. Sin. 60 024203 (in Chinese)
[9] Jiang S F, Kong F M, Li K and Gao H 2011 Acta Phys. Sin. 60 047807 (in Chinese)
[10] Hong X, Du D D, Qiu Z R and Zhang G X 2007 Acta Phys. Sin. 56 7219 (in Chinese)
[11] Wang K, Yang G, Long H, Li Y H, Dai N L and Lu P X 2007 Acta Phys. Sin. 57 3862 (in Chinese)
[12] Guo Q L and Goodman D W 2001 Chin. Phys. 10 83
[13] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (New York: Springer-Verlag)
[14] Marrocco V, Grande M, Marani R, Cal`o R, Petruzzelli V and D'Orazio A 2010 12th International Conference on Transparent Optical Networks (ICTON) (Munich) pp. 1-4
[15] Meier M and Wokaun A 1983 Opt. Lett. 8 511
[16] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley-Interscience)
[17] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters, Springer Series in Materials Science (Berlin: Springer-Verlag)
[18] Mertens H, Koenderink A F and Polman A 2007 Phys. Rev. B 76 115123
[19] Ma Y, Yang H, Hilton J P, Lin Q and Liu J Y 2010 Opt. Express 18 843
[20] Catchpolea K R and Polman A 2008 Appl. Phys. Lett. 93 191113
[21] Atwater H A and Polman A 2010 Nat. Mater. 9 865
[22] Beck F J, Polman A and Catchpole K R 2009 J. Appl. Phys. 105 114310
[23] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer-Verlag)
[24] http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ ASTMG173.html
[25] Xu G, Tazawa M, Jin P, Nakao S and Yoshimura K 2003 Appl. Phys. Lett. 82 3811
[26] Mertens H, Verhoeven J, Polman A and Tichelaar F D 2004 Appl. Phys. Lett. 85 1317
[27] Lim S H, Mar W, Matheu P, Derkacs D and Yu E T 2007 J. Appl. Phys. 101 104309
[28] Meier M and Wokaun 1983 Opt. Lett. 8 581
[29] Wokaun A, Gordon J P and Liao P F 1982 Phys. Rev. Lett. 48 957
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[9] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
No Suggested Reading articles found!