Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020509    DOI: 10.1088/1674-1056/21/2/020509
GENERAL Prev   Next  

Synchronization of noise-perturbed optical systems with multiple time delays

Tang Mao-Ning(唐矛宁)
School of Science, Huzhou University, Huzhou 313000, China
Abstract  In this paper, complete synchronization and generalized synchronization between two unidirectionally coupled optical systems with multiple time delays and noise perturbation are investigated. Sufficient conditions for both complete synchronization and generalized synchronization are rigorously established. Numerical simulations fully support the theoretical results. The effect of parameter mismatch on the quality of synchronization is also explored.
Keywords:  synchronization      noise      time delays  
Received:  20 December 2010      Revised:  12 July 2011      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.40.Ca (Noise)  
  02.30.Ks (Delay and functional equations)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2011QNA26 and 2010LKSX04) and the Natural Science Foundation of Zhejiang Provice, China (Grant Nos. Y6110775 and Y6110789).
Corresponding Authors:  Tang Mao-Ning,Mntangs@163.com     E-mail:  Mntangs@163.com

Cite this article: 

Tang Mao-Ning(唐矛宁) Synchronization of noise-perturbed optical systems with multiple time delays 2012 Chin. Phys. B 21 020509

[1] Chen G and Dong X 1998 From Chaos to Order. Methodologies, Perspectives and Applications (Singapore: World Scientific)
[2] Huang L, Feng R and Wang M 2006 emphPhys. Lett. A 350 197
[3] Chen S, Hua J, Wang C and Lü J 2004 emphPhys. Lett. A 321 50
[4] Lu J 2005 emphChaos, Solitons and Fractals 25 403
[5] Feng C, Xu X, Wu Z and Wang Y 2008 emphChin. Phys. B 17 1951
[6] Li H Q, Liao X F and Huang H Y 2011 emphActa Phys. Sin. 60 020512 (in Chinese)
[7] Lü L, Meng L, Guo L, Zou J R and Yang M 2011 emphActa Phys. Sin. 60 030506 (in Chinese)
[8] Wu Y F, Zhang S P, Sun J W and Peter R 2011 emphActa Phys. Sin. 60 020511 (in Chinese)
[9] Liu F C, Li J Y and Zang X F 2011 emphActa Phys. Sin. 60 030504 (in Chinese)
[10] Sun Y Z and Ruan J 2010 emphChin. Phys. B 19 070513
[11] Zhou P and Cao Y X 2010 emphChin. Phys. B 19 100507
[12] Yuan Z L, Xu Z Y and Guo L X 2011 emphChin. Phys. B 20 070503
[13] Hale J and Lunel S M V 1993 emphIntroduction to Functional Differential Equations (New York: Springer)
[14] Liu Y and Ohtsubo J 1997 emphIEEE Quantum Electron. 33 1163
[15] Shahverdiev E M and Shore K A 2008 emphPhys. Rev. E 77 057201
[16] Shahverdiev E M and Shore K A 2009 emphOpt. Commun. 282 310
[17] Landsman A S and Schwartz I B 2007 emph Phys. Rev. E 75 026201
[18] Senthilkumar D V, Lakshmanan M and Kurths J 2006 emphPhys. Rev. E 74 035205
[19] Voss H U 2000 emphPhys. Rev. E 61 5115
[20] Shahverdiev E M and Shore K A 2005 emphPhys. Rev. E 71 016201
[21] Shahverdiev E M, Sivaprakasam S and Shore K A 2002 emphPhys. Rev. E 66 017204
[22] Chen M and Kurths J 2007 emphPhys. Rev. E 76 036212
[23] Shahverdiev E M 2004 emph Phys. Rev. E 70 067202
[24] Shahverdiev E M, Nuriev R A, Hashimova L H, Huseynov E M, Hashimov R H and Shore K A 2008 emphChaos, Solitons and Fractals 36 211
[25] Buri'c N, Todorovi'c K and Vasovi'c N 2007 emphPhys. Rev. E 75 026209
[26] Lin W and He Y 2007 emphChaos 15 023705
[27] Chen Z, Lin W and Zhou J 2007 emphChaos 17 023106
[28] Wang G, Cao J and Lu J 2010 emphPhysica A 389 1480
[29] Korniss G 2007 emphPhys. Rev. E 75 051121
[30] Tu L L 2011 emphChin. Phys. B 20 030504
[31] Hunt D, Korniss G and Szymanski B K 2010 emph Phys. Rev. Lett. 105 068701
[32] Arecchi F T, Giacomelli G, Lapucci A and Meucci R 1991 emphPhys. Rev. A 43 4997
[33] Ikeda K and Matsumoto K 1986 emphJ. Stat. Phys. 44 955
[34] Mao X 1997 emph Stochastic Differential Equations and Applications (English: Horwood)
[35] Rosenblum M G, Pikovsky A S and Kurths J 1997 emphPhys. Rev. Lett. 78 4193
[36] Rulkov N F, Sushchik M M, Tsimring L S and Abarbanel H D I 1995 emphPhys. Rev. E 51 980
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[3] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[4] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[5] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[6] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[7] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[8] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[9] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[10] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[11] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[12] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[13] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[14] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[15] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
No Suggested Reading articles found!