Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020510    DOI: 10.1088/1674-1056/21/2/020510
GENERAL Prev   Next  

Topology identification for a class of complex dynamical networks using output variables

Fan Chun-Xia(樊春霞), Wan You-Hong(万佑红), and Jiang Guo-Ping(蒋国平)
College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stability theory. Here the output of the network and the states of the observer are used to construct the updating law of the topology such that the communication resources from the network to its observer are saved. Some convergent criteria of the adaptive observer are derived in the form of linear inequality matrices. Several numerical examples are shown to demonstrate the effectiveness of the proposed observer.
Keywords:  complex dynamical networks      topology identification      adaptive observer      output variables  
Received:  17 May 2011      Revised:  22 August 2011      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60874091 and 61104103), the Natural Science Fund for Colleges and Universities in Jiangsu Province, China (Grant No. 10KJB120001), and the Climbing Program of Nanjing University of Posts & Telecommunications, China (Grant Nos. NY210013 and NY210014).
Corresponding Authors:  Fan Chun-Xia,njfcx@126.com     E-mail:  njfcx@126.com

Cite this article: 

Fan Chun-Xia(樊春霞), Wan You-Hong(万佑红), and Jiang Guo-Ping(蒋国平) Topology identification for a class of complex dynamical networks using output variables 2012 Chin. Phys. B 21 020510

[1] Strogatz S H 2001 Nature 410 268
[2] Tang W K S, Mao Y and Kocarev L 2007 IEEE International Synposium on Circuits and Systems 27-30 May 2007 p. 2646
[3] Chen W D, Xu H and Guo Q 2010 Acta Phys. Sin. 59 4514 (in Chinese)
[4] Cui A X, Fu Y, Shang M S, Chen D B and Zhou T 2011 Acta Phys. Sin. 60 038901 (in Chinese)
[5] Materassi D and Innocenti G 2010 IEEE Trans. Autom. Control 55 1860
[6] Yang S and Kolaczyk E D 2010 IEEE Trans. Inform. Theory 56 2502
[7] Timme M 2007 Phys. Rev. Lett. 98 224101
[8] Napoletani D and Sauer T D 2008 Phys. Rev. E 77 026013
[9] Wu X Q 2008 Physica A 387 997
[10] Liu H, Lu J A, Lu J H and Hill D J 2009 Automatica 45 1799
[11] Liu H, Jiang G P and Fan C X 2008 IEEE Asia Pacific Conference on Circuits and Systems Macao, China, November 30-December 3, 2008, pp. 1212-1215
[12] Liu H, Song Y, Fan C and Jiang G 2010 Chin. Phys. B 19 070508
[13] Liu Y, Wang Z, Liang J and Liu X 2008 IEEE Trans. Sys. Man. and Cyb. B: Cybernetics 38 1314
[14] Chen L, Lu J A and Tse C K 2009 IEEE Trans. Circ. Sys. II: Express Briefs 56 350
[15] Jiang G P, Tang W K S and Chen G R 2006 IEEE Trans. Circ. Sys. I: Regular Papers 53 2739
[16] Lorenz E N 1963 J. Atmospheric Sci. 20 130
[17] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[18] Lü J and Chen G 1999 Int. J. Bifur. Chaos 12 659
[19] Wang X F 2002 Int. J. Bifur. Chaos 12 885
[1] Hash function construction using weighted complex dynamical networks
Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平). Chin. Phys. B, 2013, 22(4): 040506.
[2] Impulsive synchronization of two coupled complex networks with time-delayed dynamical nodes
Wang Shu-Guo(王树国) and Yao Hong-Xing(姚洪兴) . Chin. Phys. B, 2011, 20(9): 090513.
[3] A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization
Mahdi Pourgholi and Vahid Johari Majd . Chin. Phys. B, 2011, 20(12): 120503.
[4] Optimization-based topology identification of complex networks
Tang Sheng-Xue(唐圣学), Chen Li(陈丽), and He Yi-Gang(何怡刚) . Chin. Phys. B, 2011, 20(11): 110502.
[5] Fault diagnosis of time-delay complex dynamical networks using output signals
Liu Hao (刘昊), Song Yu-Rong (宋玉蓉), Fan Chun-Xia (樊春霞), Jiang Guo-Ping (蒋国平). Chin. Phys. B, 2010, 19(7): 070508.
[6] Synchronization of stochastically hybrid coupled neural networks with coupling discrete and distributed time-varying delays
Tang Yang (唐漾), Zhong Hui-Huang(钟恢凰), Fang Jian-An(方建安). Chin. Phys. B, 2008, 17(11): 4080-4090.
No Suggested Reading articles found!