Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020508    DOI: 10.1088/1674-1056/21/2/020508
GENERAL Prev   Next  

Application of local polynomial estimation in suppressing strong chaotic noise

Su Li-Yun(苏理云)a), Ma Yan-Ju(马艳菊)a), and Li Jiao-Jun(李姣军)b)
1. School of Mathematics and Statistics, Chongqing University of Technology, Chongqing 400054, China;
2. School of Electronic Information and Automation, Chongqing University of Technology, Chongqing 400054, China
Abstract  In this paper, we propose a new method that combines chaotic series phase space reconstruction and local polynomial estimation to solve the problem of suppressing strong chaotic noise. First, chaotic noise time series are reconstructed to obtain multivariate time series according to Takens delay embedding theorem. Then the chaotic noise is estimated accurately using local polynomial estimation method. After chaotic noise is separated from observation signal, we can get the estimation of the useful signal. This local polynomial estimation method can combine the advantages of local and global law. Finally, it makes the estimation more exactly and we can calculate the formula of mean square error theoretically. The simulation results show that the method is effective for the suppression of strong chaotic noise when the signal to interference ratio is low.
Keywords:  strong chaotic noise      local polynomial estimation      weak signal detection  
Received:  06 August 2011      Revised:  22 September 2011      Accepted manuscript online: 
PACS:  05.45.Tp (Time series analysis)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Natural Science Foundation of Chongqing Science & Technology Commission, China (Grant No. CSTC2010BB2310) and the Chongqing Municipal Education Commission Foundation, China (Grant Nos. KJ080614, KJ100810, and KJ100818).
Corresponding Authors:  Su Li-Yun,cloudhopping@163.com     E-mail:  cloudhopping@163.com

Cite this article: 

Su Li-Yun(苏理云), Ma Yan-Ju(马艳菊), and Li Jiao-Jun(李姣军) Application of local polynomial estimation in suppressing strong chaotic noise 2012 Chin. Phys. B 21 020508

[1] Li Y, Yang B J and Shi Y W 2003 Acta Phys. Sin. 52 526 (in Chinese)
[2] Nie C Y 2009 Chaotic System and Weak Signal Detection (Beijing: Tsinghua University Press) p. 23 (in Chinese)
[3] Guan Y and He S L 2003 IEEE T. Circ. I 50 945
[4] Deng K, Zhang L and Luo M K 2010 Chin. Phys. B 19 030506
[5] Su L Y, Ma H and Tang S F 2007 J. Sichuan Univ. (Eng. Sci.) 39 149 (in Chinese)
[6] Kennel M B, Brown R and Abarbanel H D I 1992 Phys. Rev. A 45 3403
[7] Maguire L P, Roche B, Mcginnity T M and Mcdaid L J 1998 Infor. Sci. 112 125
[8] You R Y and Huang X J 2011 Chin. Phys. B 20 020505
[9] Zhang C T, Ma Q L, Peng H and Jiang Y Y 2011 Acta Phys. Sin. 60 020508 (in Chinese)
[10] Wang H W and Gu H 2009 Lect. Notes Comput. Sci. 5551 836
[11] Mao J Q, Ding H S and Yao J 2009 Acta Phys. Sin. 58 2220 (in Chinese)
[12] Meng Q F, Peng Y H and Sun J 2007 Chin. Phys. 16 3220
[13] Zhou Y D, Ma H, Wang H Q and L? W Y 2007 Wireless Pers. Commun. 43 1379
[14] Su L Y 2010 Comput. Math. Appl. 59 737
[15] Su L Y and Li F L 2010 Math. Probl. Eng. 2010 605241
[16] Su L Y 2011 Discrete Dyn. Nat. Soc. 2011 930958
[17] Fan J Q, Yao Q W and Chen M 2005 Nonlinear Time Series (Beijing: Higher Education Press) p. 51 (in Chinese)
[1] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[2] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[3] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
[4] Novel Woods-Saxon stochastic resonance system for weak signal detection
Yong-Hui Zhou(周永辉), Xue-Mei Xu(许雪梅), Lin-Zi Yin(尹林子), Yi-Peng Ding(丁一鹏), Jia-Feng Ding(丁家峰), Ke-Hui Sun(孙克辉). Chin. Phys. B, 2020, 29(4): 040503.
[5] Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator
Jian Hou(侯健), Xiao-peng Yan(闫晓鹏), Ping Li(栗苹), Xin-hong Hao(郝新红). Chin. Phys. B, 2018, 27(3): 030702.
[6] Analysis of a kind of Duffing oscillator system used to detect weak signals
Li Yue(李月), Yang Bao-Jun(杨宝俊), Yuan Ye(袁野), and Liu Xiao-Hua(刘晓华). Chin. Phys. B, 2007, 16(4): 1072-1076.
No Suggested Reading articles found!