CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Thermal properties of single-walled carbon nanotube crystal |
Hu Li-Jun(胡丽君)a)b), Liu Ji(刘基)a), Liu Zheng(刘政)a), Qiu Cai-Yu(邱彩玉)a)b), Zhou Hai-Qing(周海青)a)b), and Sun Lian-Feng(孙连峰)a)† |
a National Center for Nanoscience and Technology, Beijing 100190, China; b Graduate University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In this work, the thermal properties of a single-walled carbon nanotube (SWCNT) crystal are studied. The thermal conductivity of the SWCNT crystal is found to have a linear dependence on temperature in the temperature range from 1.9 K to 100.0 K. In addition, a peak (658 W/mK) is found at a temperature of about 100.0 K. The thermal conductivity decreases gradually to a value of 480 W/mK and keeps almost a constant in the temperature range from 100.0 K to 300.0 K. Meanwhile, the specific heat shows an obvious linear relationship with temperature in the temperature range from 1.9 K to 300.0 K. We discuss the possible mechanisms for these unique thermal properties of the single-walled carbon nanotube crystal.
|
Received: 10 November 2010
Revised: 20 January 2011
Accepted manuscript online:
|
PACS:
|
61.48.De
|
(Structure of carbon nanotubes, boron nanotubes, and other related systems)
|
|
78.67.De
|
(Quantum wells)
|
|
81.05.U-
|
(Carbon/carbon-based materials)
|
|
Cite this article:
Hu Li-Jun(胡丽君), Liu Ji(刘基), Liu Zheng(刘政), Qiu Cai-Yu(邱彩玉), Zhou Hai-Qing(周海青), and Sun Lian-Feng(孙连峰) Thermal properties of single-walled carbon nanotube crystal 2011 Chin. Phys. B 20 096101
|
[1] |
Iijima S and Ichihashi T 1993 Nature 363 603
|
[2] |
Tans S J, Devoret M H, Dai H J, Thess A, Smalley R E, Georliga L J and Dekker C 1997 Nature 386 474
|
[3] |
Bockrath M, Cobden D H, McEuen P L, Chopra N G, Zettl A, Thess A and Smalley R E 1997 Science 275 1922
|
[4] |
Rosen R, Simendinger W, Debbault C, Shimoda H, Fleming L, Stoner B and Zhou O 2000 Appl. Phys. Lett. 76 1668
|
[5] |
Liu J, Zheng K H, Liu Z, Hu L J and Sun L F 2010 Chin. Phys. B 19 066101
|
[6] |
Wei L H, Kuo P K, Thomas R L, Anthony T R and Banholzer W F 1993 Phys. Rev. Lett. 70 3764
|
[7] |
Berber S, Kwon Y K and Thmanek D 2000 Phys. Rev. Lett. 84 4613
|
[8] |
Tritt M T 2004 Thermal Conductivity: Theory, Properties, and Applications (New York: Kluwer Academic/Plenum Publishers) p. 258
|
[9] |
Dai H J, Llaguno M C, Nemes N M, Johnson A T, Fischer J E, Walters D A, Casavant M J, Schmidt J and Smally R E 2000 Appl. Phys. Lett. 77 666
|
[10] |
Liu G T, Zhao Y C, Deng K, Liu Z, Chu W G, Chen J R, Yang Y L, Zheng K H, Huang H B, Ma W J, Song L,Yang H F, Gu C Z, Rao G H, Wang C, Xie S S and Sun L F 2008 Nano Lett. 8 4
|
[11] |
Ma W J, Song L,Yang R, Zhang T H, Zhao Y C, Sun L F, Ren Y, Liu D F, Liu L F, Shen J, Zhang Z X, Xiang Y J, Zhou W Y and Xie S S 2007 Nano Lett. 7 2307
|
[12] |
Dai H J, Whitney, Piskoti M C and Zettl A 1999 Phys. Rev. B 59 2514
|
[13] |
Yu J, Kalia R K and Vashishta P 1995 J. Chem. Phys. 103 6697
|
[14] |
Tersoff J and Ruoff R S 1994 Phys. Rev. Lett. 73 676
|
[15] |
Delaney P, Choi H J, Ihm J, Louie S G and Cohen M L 1999 Phys. Rev. B 60 7899
|
[16] |
Sinha S, Barjami S, Iannacchione G, Schwab A and Muench G 2005 J. Nanopart. Res. 7 651
|
[17] |
Wang Z L, Liang J G, Tang D W and Zhu Y T 2008 Acta Phys. Sin. 57 3391 (in Chinese)
|
[18] |
Hou Q W, Cao B Y and Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese)
|
[19] |
Mizel A, Benedict L X, Cohen M L, Louie S G, Zettl A, Budraa N K and Beyermann W P 1999 Phys. Rev. B 60 3264
|
[20] |
Bao W X and Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese)
|
[21] |
Desorbo W and Tyler W W 1953 J. Chem. Phys. 21 1660
|
[22] |
Yi W, Lu L, Zhang D L, Pan Z W and Xie S S 1999 Phys. Rev. B 59 9015
|
[23] |
Benedict L X, Louie S G and Cohen M L 1996 Solid State Comm. 100 177
|
[24] |
Zhou Z P, Ci L J, Song L, Yan X Q, Liu D F, Yuan H J, Gao Y, Wang J X, Liu L F, Zhou W Y, Wang G and Xie S S 2004 J. Phys. Chem. B 10810751
|
[25] |
Dai H J, Batlogg B, Benes Z, Johnson A T and Fischer J E 2000 Science 289 1730
|
[26] |
Kane C L and Mele E J 1997 Phys. Rev. Lett. 78 1932
|
[27] |
Jishi R A, Venkataraman L, Dresselhaus M S and Dresselhaus G 1993 Chem. Phys. Lett. 209 77
|
[28] |
Wang W, Zhang K W, Meng L J, Li Z Q, Zuo X Y and Zhong J X 2010 Acta Phys. Sin. 59 2672 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|